An application of the sum-product phenomenon to sets avoiding several linear equations
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 580-603
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the theory of sum-products we prove that for an arbitrary $\kappa \le 1/3$ any subset of $\mathbb{F}_p$ avoiding $t$ linear equations with three variables has size less than $O(p/t^\kappa)$.
Bibliography: 26 titles.
Keywords:
additive combinatorics, sum-product
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{SM_2018_209_4_a5,
author = {I. D. Shkredov},
title = {An application of the sum-product phenomenon to sets avoiding several linear equations},
journal = {Sbornik. Mathematics},
pages = {580--603},
publisher = {mathdoc},
volume = {209},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/}
}
I. D. Shkredov. An application of the sum-product phenomenon to sets avoiding several linear equations. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 580-603. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/