An application of the sum-product phenomenon to sets avoiding several linear equations
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 580-603 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the theory of sum-products we prove that for an arbitrary $\kappa \le 1/3$ any subset of $\mathbb{F}_p$ avoiding $t$ linear equations with three variables has size less than $O(p/t^\kappa)$. Bibliography: 26 titles.
Keywords: additive combinatorics, sum-product
Mots-clés : Fourier transform.
@article{SM_2018_209_4_a5,
     author = {I. D. Shkredov},
     title = {An application of the sum-product phenomenon to sets avoiding several linear equations},
     journal = {Sbornik. Mathematics},
     pages = {580--603},
     year = {2018},
     volume = {209},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - An application of the sum-product phenomenon to sets avoiding several linear equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 580
EP  - 603
VL  - 209
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/
LA  - en
ID  - SM_2018_209_4_a5
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T An application of the sum-product phenomenon to sets avoiding several linear equations
%J Sbornik. Mathematics
%D 2018
%P 580-603
%V 209
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/
%G en
%F SM_2018_209_4_a5
I. D. Shkredov. An application of the sum-product phenomenon to sets avoiding several linear equations. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 580-603. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/

[1] E. Aksoy Yazici, B. Murphy, M. Rudnev, I. Shkredov, Growth estimates in positive characteristic via collisions, arXiv: 1512.06613v1

[2] N. Alon, J. Bourgain, “Additive patterns in multiplicative subgroups”, Geom. Funct. Anal., 24:3 (2014), 721–739 | DOI | MR | Zbl

[3] T. F. Bloom, “A quantitative improvement for Roth's theorem on arithmetic progressions”, J. Lond. Math. Soc. (2), 93:3 (2016), 643–663 | DOI | MR | Zbl

[4] P. Candela, O. Sisask, “On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime”, Acta Math. Hungar., 132:3 (2011), 223–243 | DOI | MR | Zbl

[5] S. V. Konyagin, I. D. Shkredov, “On sum sets of sets having small product set”, Proc. Steklov Inst. Math., 290:1 (2015), 288–299 | DOI | DOI | MR | Zbl

[6] S. V. Konyagin, I. D. Shkredov, “New results on sum and products in $\mathbb R$”, Proc. Steklov Inst. Math., 294 (2016), 78–88 | DOI | DOI | MR | Zbl

[7] B. Murphy, G. Petridis, A second wave of expanders in finite fields, arXiv: 1701.01635v1

[8] G. Petridis, Products of differences in prime order finite fields, arXiv: 1602.02142

[9] O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New sum-product type estimates over finite fields”, Adv. Math., 293 (2016), 589–605 | DOI | MR | Zbl

[10] W. Rudin, Fourier analysis on groups, Wiley Classics Lib., Reprint of the 1962 original, John Wiley Sons, Inc., 1990, x+285 pp. | DOI | MR | Zbl

[11] M. Rudnev, On the number of incidences between planes and points in three dimensions, arXiv: 1407.0426v3

[12] M. Rudnev, I. D. Shkredov, S. Stevens, On the energy variant of the sum-product conjecture, arXiv: 1607.05053v2

[13] I. Z. Ruzsa, “Solving a linear equation in a set of integers. I”, Acta Arith., 65:3 (1993), 259–282 | DOI | MR | Zbl

[14] I. Z. Ruzsa, “Solving a linear equation in a set of integers. II”, Acta Arith., 72:4 (1995), 385–397 | DOI | MR | Zbl

[15] I. Z. Ruzsa, “Arithmetical progressions and the number of sums”, Period. Math. Hungar., 25:1 (1992), 105–111 | DOI | MR | Zbl

[16] T. Sanders, “On Roth's theorem on progressions”, Ann. of Math. (2), 174:1 (2011), 619–636 | DOI | MR | Zbl

[17] A. Sárközy, “On sums and products of residues modulo $p$”, Acta Arith., 118:4 (2005), 403–409 | DOI | MR | Zbl

[18] Y. V. Stanchescu, “Planar sets containing no three collinear points and non-averaging sets of integers”, Discrete Math., 256:1-2 (2002), 387–395 | DOI | MR | Zbl

[19] I. D. Shkredov, “On sets of large trigonometric sums”, Izv. Math., 72:1 (2008), 149–168 | DOI | DOI | MR | Zbl

[20] I. D. Shkredov, “On sumsets of dissociated sets”, Online J. Anal. Comb., 2009, no. 4, Art. 4, 26 pp. | MR | Zbl

[21] I. Shkredov, “Energies and structure of additive sets”, Electron. J. Combin., 21:3 (2014), P3.44, 53 pp. | MR | Zbl

[22] I. D. Shkredov, “Difference sets are not multiplicatively closed”, Discrete Anal., 2016, 17, 21 pp. | DOI | MR | Zbl

[23] I. D. Shkredov, D. Zhelezov, On additive bases of sets with small product set, arXiv: 1606.02320v1

[24] S. Stevens, F. de Zeeuw, An improved point-line incidence bound over arbitrary fields, arXiv: 1609.06284v2

[25] T. Tao, Van H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp. | DOI | MR | Zbl

[26] S. Yekhanin, “A note on plane pointless curves”, Finite Fields Appl., 13:2 (2007), 418–422 | DOI | MR | Zbl