An application of the sum-product phenomenon to sets avoiding several linear equations
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 580-603

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the theory of sum-products we prove that for an arbitrary $\kappa \le 1/3$ any subset of $\mathbb{F}_p$ avoiding $t$ linear equations with three variables has size less than $O(p/t^\kappa)$. Bibliography: 26 titles.
Keywords: additive combinatorics, sum-product
Mots-clés : Fourier transform.
@article{SM_2018_209_4_a5,
     author = {I. D. Shkredov},
     title = {An application of the sum-product phenomenon to sets avoiding several linear equations},
     journal = {Sbornik. Mathematics},
     pages = {580--603},
     publisher = {mathdoc},
     volume = {209},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - An application of the sum-product phenomenon to sets avoiding several linear equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 580
EP  - 603
VL  - 209
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/
LA  - en
ID  - SM_2018_209_4_a5
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T An application of the sum-product phenomenon to sets avoiding several linear equations
%J Sbornik. Mathematics
%D 2018
%P 580-603
%V 209
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/
%G en
%F SM_2018_209_4_a5
I. D. Shkredov. An application of the sum-product phenomenon to sets avoiding several linear equations. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 580-603. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a5/