Pluripotential theory and convex bodies
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 352-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles $L$ over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in $\mathbb{C}^d$. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in $(\mathbb{R}^+)^d$. These classes of polynomials need not occur as sections of tensor powers of a line bundle $L$ over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results. Bibliography: 16 titles.
Keywords: convex body, $P$-extremal function.
@article{SM_2018_209_3_a3,
     author = {T. Bayraktar and T. Bloom and N. Levenberg},
     title = {Pluripotential theory and convex bodies},
     journal = {Sbornik. Mathematics},
     pages = {352--384},
     year = {2018},
     volume = {209},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/}
}
TY  - JOUR
AU  - T. Bayraktar
AU  - T. Bloom
AU  - N. Levenberg
TI  - Pluripotential theory and convex bodies
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 352
EP  - 384
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/
LA  - en
ID  - SM_2018_209_3_a3
ER  - 
%0 Journal Article
%A T. Bayraktar
%A T. Bloom
%A N. Levenberg
%T Pluripotential theory and convex bodies
%J Sbornik. Mathematics
%D 2018
%P 352-384
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/
%G en
%F SM_2018_209_3_a3
T. Bayraktar; T. Bloom; N. Levenberg. Pluripotential theory and convex bodies. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 352-384. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/

[1] T. Bayraktar, “Zero distribution of random sparse polynomials”, Michigan Math. J., 66:2 (2017), 389–419 ; arXiv: 1503.00630v4 | DOI | MR | Zbl

[2] E. Bedford, B. A. Taylor, “Plurisubharmonic functions with logarithmic singularities”, Ann. Inst. Fourier (Grenoble), 38:4 (1988), 133–171 | DOI | MR | Zbl

[3] R. J. Berman, “Bergman kernels for weighted polynomials and weighted equilibrium measures of $\mathbb C^n$”, Indiana Univ. Math. J., 58:4 (2009), 1921–1946 | DOI | MR | Zbl

[4] R. Berman, S. Boucksom, “Growth of balls of holomorphic sections and energy at equilibrium”, Invent. Math., 181:2 (2010), 337–394 | DOI | MR | Zbl

[5] R. Berman, S. Boucksom, D. W. Nyström, “Fekete points and convergence towards equilibrium on complex manifolds”, Acta Math., 207:1 (2011), 1–27 | DOI | MR | Zbl

[6] T. Bloom, “Weighted polynomials and weighted pluripotential theory”, Trans. Amer. Math. Soc., 361:4 (2009), 2163–2179 | DOI | MR | Zbl

[7] T. Bloom, L. Bos, N. Levenberg, S. Waldron, “On the convergence of optimal measures”, Constr. Approx., 32:1 (2010), 159–179 | DOI | MR | Zbl

[8] T. Bloom, N. Levenberg, F. Piazzon, F. Wielonsky, “Bernstein–Markov: a survey”, Dolomites Res. Notes Approx., 8, Special issue (2015), 75–91 | DOI | MR | Zbl

[9] L. Bos, N. Levenberg, Bernstein–Walsh theory associated to convex bodies and applications to multivariate approximation theory, arXiv: 1701.05613

[10] J. Kiefer, J. Wolfowitz, “The equivalence of two extremum problems”, Canad. J. Math., 12 (1960), 363–366 | DOI | MR | Zbl

[11] M. Klimek, Pluripotential theory, London Math. Soc. Monogr. (N.S.), 6, The Clarendon Press, Oxford Univ. Press, New York, 1991, xiv+266 pp. | MR | Zbl

[12] A. Rashkovskii, “Total masses of mixed Monge–Ampère currents”, Michigan Math. J., 51:1 (2003), 169–185 | DOI | MR | Zbl

[13] R. Rumely, “A Robin formula for the Fekete–Leja transfinite diameter”, Math. Ann., 337:4 (2007), 729–738 | DOI | MR | Zbl

[14] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[15] J. Siciak, “Extremal plurisubharmonic functions in $\mathbf C^N$”, Ann. Polon. Math., 39 (1981), 175–211 | DOI | MR | Zbl

[16] M. Vergne, “Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes”, European women in mathematics (Malta, 2001), World Sci. Publ., River Edge, NJ, 2003, 222–285 | MR | Zbl