@article{SM_2018_209_3_a3,
author = {T. Bayraktar and T. Bloom and N. Levenberg},
title = {Pluripotential theory and convex bodies},
journal = {Sbornik. Mathematics},
pages = {352--384},
year = {2018},
volume = {209},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/}
}
T. Bayraktar; T. Bloom; N. Levenberg. Pluripotential theory and convex bodies. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 352-384. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/
[1] T. Bayraktar, “Zero distribution of random sparse polynomials”, Michigan Math. J., 66:2 (2017), 389–419 ; arXiv: 1503.00630v4 | DOI | MR | Zbl
[2] E. Bedford, B. A. Taylor, “Plurisubharmonic functions with logarithmic singularities”, Ann. Inst. Fourier (Grenoble), 38:4 (1988), 133–171 | DOI | MR | Zbl
[3] R. J. Berman, “Bergman kernels for weighted polynomials and weighted equilibrium measures of $\mathbb C^n$”, Indiana Univ. Math. J., 58:4 (2009), 1921–1946 | DOI | MR | Zbl
[4] R. Berman, S. Boucksom, “Growth of balls of holomorphic sections and energy at equilibrium”, Invent. Math., 181:2 (2010), 337–394 | DOI | MR | Zbl
[5] R. Berman, S. Boucksom, D. W. Nyström, “Fekete points and convergence towards equilibrium on complex manifolds”, Acta Math., 207:1 (2011), 1–27 | DOI | MR | Zbl
[6] T. Bloom, “Weighted polynomials and weighted pluripotential theory”, Trans. Amer. Math. Soc., 361:4 (2009), 2163–2179 | DOI | MR | Zbl
[7] T. Bloom, L. Bos, N. Levenberg, S. Waldron, “On the convergence of optimal measures”, Constr. Approx., 32:1 (2010), 159–179 | DOI | MR | Zbl
[8] T. Bloom, N. Levenberg, F. Piazzon, F. Wielonsky, “Bernstein–Markov: a survey”, Dolomites Res. Notes Approx., 8, Special issue (2015), 75–91 | DOI | MR | Zbl
[9] L. Bos, N. Levenberg, Bernstein–Walsh theory associated to convex bodies and applications to multivariate approximation theory, arXiv: 1701.05613
[10] J. Kiefer, J. Wolfowitz, “The equivalence of two extremum problems”, Canad. J. Math., 12 (1960), 363–366 | DOI | MR | Zbl
[11] M. Klimek, Pluripotential theory, London Math. Soc. Monogr. (N.S.), 6, The Clarendon Press, Oxford Univ. Press, New York, 1991, xiv+266 pp. | MR | Zbl
[12] A. Rashkovskii, “Total masses of mixed Monge–Ampère currents”, Michigan Math. J., 51:1 (2003), 169–185 | DOI | MR | Zbl
[13] R. Rumely, “A Robin formula for the Fekete–Leja transfinite diameter”, Math. Ann., 337:4 (2007), 729–738 | DOI | MR | Zbl
[14] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl
[15] J. Siciak, “Extremal plurisubharmonic functions in $\mathbf C^N$”, Ann. Polon. Math., 39 (1981), 175–211 | DOI | MR | Zbl
[16] M. Vergne, “Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes”, European women in mathematics (Malta, 2001), World Sci. Publ., River Edge, NJ, 2003, 222–285 | MR | Zbl