Pluripotential theory and convex bodies
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 352-384

Voir la notice de l'article provenant de la source Math-Net.Ru

A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles $L$ over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in $\mathbb{C}^d$. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in $(\mathbb{R}^+)^d$. These classes of polynomials need not occur as sections of tensor powers of a line bundle $L$ over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results. Bibliography: 16 titles.
Keywords: convex body, $P$-extremal function.
@article{SM_2018_209_3_a3,
     author = {T. Bayraktar and T. Bloom and N. Levenberg},
     title = {Pluripotential theory and convex bodies},
     journal = {Sbornik. Mathematics},
     pages = {352--384},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/}
}
TY  - JOUR
AU  - T. Bayraktar
AU  - T. Bloom
AU  - N. Levenberg
TI  - Pluripotential theory and convex bodies
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 352
EP  - 384
VL  - 209
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/
LA  - en
ID  - SM_2018_209_3_a3
ER  - 
%0 Journal Article
%A T. Bayraktar
%A T. Bloom
%A N. Levenberg
%T Pluripotential theory and convex bodies
%J Sbornik. Mathematics
%D 2018
%P 352-384
%V 209
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/
%G en
%F SM_2018_209_3_a3
T. Bayraktar; T. Bloom; N. Levenberg. Pluripotential theory and convex bodies. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 352-384. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a3/