A~uniform Tauberian theorem in dynamic games
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 122-144

Voir la notice de l'article provenant de la source Math-Net.Ru

Antagonistic dynamic games including games represented in normal form are considered. The asymptotic behaviour of value in these games is investigated as the game horizon tends to infinity (Cesàro mean) and as the discounting parameter tends to zero (Abel mean). The corresponding Abelian-Tauberian theorem is established: it is demonstrated that in both families the game value uniformly converges to the same limit, provided that at least one of the limits exists. Analogues of one-sided Tauberian theorems are obtained. An example shows that the requirements are essential even for control problems. Bibliography: 31 titles.
Keywords: dynamic programming principle, games with a saddle point, Tauberian theorem.
@article{SM_2018_209_1_a5,
     author = {D. V. Khlopin},
     title = {A~uniform {Tauberian} theorem in dynamic games},
     journal = {Sbornik. Mathematics},
     pages = {122--144},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a5/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - A~uniform Tauberian theorem in dynamic games
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 122
EP  - 144
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a5/
LA  - en
ID  - SM_2018_209_1_a5
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T A~uniform Tauberian theorem in dynamic games
%J Sbornik. Mathematics
%D 2018
%P 122-144
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a5/
%G en
%F SM_2018_209_1_a5
D. V. Khlopin. A~uniform Tauberian theorem in dynamic games. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 122-144. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a5/