@article{SM_2018_209_1_a5,
author = {D. V. Khlopin},
title = {A~uniform {Tauberian} theorem in dynamic games},
journal = {Sbornik. Mathematics},
pages = {122--144},
year = {2018},
volume = {209},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a5/}
}
D. V. Khlopin. A uniform Tauberian theorem in dynamic games. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 122-144. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a5/
[1] G. H. Hardy, J. E. Littlwood, “Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive”, Proc. London Math. Soc. (2), 13 (1914), 174–191 | DOI | MR | Zbl
[2] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl
[3] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[4] J. Korevaar, “A century of complex Tauberian theory”, Bull. Amer. Math. Soc. (N.S.), 39:4 (2002), 475–531 | DOI | MR | Zbl
[5] A. F. Grishin, I. V. Poedintseva, “Abelian and Tauberian theorems for integrals”, St. Petersburg Math. J., 26:3 (2015), 357–409 | DOI | MR | Zbl
[6] A. L. Yakymiv, “A Tauberian theorem for multiple power series”, Sb. Math., 207:2 (2016), 286–313 | DOI | DOI | MR | Zbl
[7] J.-F. Mertens, A. Neyman, “Stochastic games”, Internat. J. Game Theory, 10:2 (1981), 53–66 | DOI | MR | Zbl
[8] T. Bewley, E. Kohlberg, “The asymptotic theory of stochastic games”, Math. Oper. Res., 1:3 (1976), 197–208 | DOI | MR | Zbl
[9] B. Ziliotto, “A Tauberian theorem for nonexpansive operators and applications to zero-sum stochastic games”, Math. Oper. Res., 41:4 (2016), 1522–1534 | DOI | MR | Zbl
[10] R. Z. Khasminskii, “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kybernetika, 4:3 (1968), 260–279
[11] V. G. Gaitsgori, “Use of the averaging method in control problems”, Differential Equations, 22:11 (1986), 1290–1299 | MR
[12] P. Lions, G. Papanicolaou, S. R. S. Varadhan, Homogenization of Hamilton–Jacobi equations, unpublished, 1986
[13] A. Bensoussan, Perturbation methods in optimal control, Wiley/Gauthier-Villars Ser. Modern Appl. Math., John Wiley Sons, Ltd., Chichester; Gauthier-Villars, Montrouge, 1988, xiv+573 pp. | MR | Zbl
[14] F. Colonius, W. Kliemann, “Infinite time optimal control and periodicity”, Appl. Math. Optim., 20:2 (1989), 113–130 | DOI | MR | Zbl
[15] D. A. Carlson, A. B. Haurie, A. Leizarowitz, Infinite horizon optimal control. Deterministic and stochastic systems, 2nd rev. and enl. ed., Springer-Verlag, Berlin, 1991, xvi+332 pp. | MR | Zbl
[16] M. Arisawa, “Ergodic problem for the Hamilton–Jacobi–Bellman equation. II”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15:1 (1998), 1–24 | DOI | MR | Zbl
[17] M. Arisawa, P. L. Lions, “On ergodic stochastic control”, Comm. Partial Differential Equations, 23:11-12 (1998), 2187–2217 | DOI | MR | Zbl
[18] A. Fathi, “Sur la convergence du semi-groupe de Lax–Oleinik”, C. R. Acad. Sci. Paris Sér. I Math., 327:3 (1998), 267–270 | DOI | MR | Zbl
[19] Z. Artstein, V. Gaitsgory, “The value function of singularly perturbed control systems”, Appl. Math. Optim., 41:3 (2000), 425–445 | DOI | MR | Zbl
[20] G. Barles, P. E. Souganidis, “On the large time behavior of solutions of Hamilton–Jacobi equations”, SIAM J. Math. Anal., 31:4 (2000), 925–939 | DOI | MR | Zbl
[21] O. Alvarez, M. Bardi, “Ergodic problems in differential games”, Advances in dynamic game theory, Ann. Internat. Soc. Dynam. Games, 9, Birkhäuser Boston, 2007, 131–152 | DOI | MR | Zbl
[22] L. Grüne, “On the relation between discounted and average optimal value functions”, J. Differential Equations, 148:1 (1998), 65–99 | DOI | MR | Zbl
[23] V. Gaitsgory, M. Quincampoix, “On sets of occupational measures generated by a deterministic control system on an infinite time horizon”, Nonlinear Anal., 88 (2013), 27–41 | DOI | MR | Zbl
[24] P. Cannarsa, M. Quincampoix, “Vanishing discount limit and nonexpansive optimal control and differential games”, SIAM J. Control Optim., 53:4 (2015), 1789–1814 | DOI | MR | Zbl
[25] E. Lehrer, S. Sorin, “A uniform Tauberian theorem in dynamic programming”, Math. Oper. Res., 17:2 (1992), 303–307 | DOI | MR | Zbl
[26] M. Oliu-Barton, G. Vigeral, “A uniform Tauberian theorem in optimal control”, Advances in dynamic games. Theory, applications, and numerical methods for differential and stochastic games (Banff, Canada, 2010), Ann. Internat. Soc. Dynam. Games, 12, Birkhäuser/Springer, New York, 2012, 199–215 ; Erratum in: HAL preprint ID hal-00661833v3, 2016 } {https://hal.archives-ouvertes.fr/hal-00661833v3 | DOI | MR | Zbl
[27] D. V. Khlopin, “Uniform Tauberian theorem in differential games”, Autom. Remote Control, 77:4 (2016), 734–750 | DOI | MR | Zbl
[28] A. G. Chentsov, “On interrelations between different versions of the method of program iterations: a positional version”, Cybern. Syst. Anal., 38:3 (2002), 422–438 | DOI | MR | Zbl
[29] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1997, xviii+570 pp. | DOI | MR | Zbl
[30] N. N. Krasovskii, A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | MR | Zbl | Zbl
[31] D. V. Khlopin, On an example for the uniform Tauberian theorem in abstract control systems, arXiv: 1604.07111