The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 35-55
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper sheds light on the structure of functions which are universal for $L^p$-spaces, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. It is shown that there exists a measurable set $E\subset [0,1]$, whose measure is arbitrarily close to $1$, such that by an appropriate change of values of any function $f\in L^1[0,1]$ outside $E$ a function $\widetilde f\in L^1[0,1]$ can be obtained that is universal for each $L^p[0,1]$-space, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients.
Bibliography: 28 titles.
Keywords:
universal function, Walsh system, convergence in a metric.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{SM_2018_209_1_a1,
author = {M. G. Grigoryan and A. A. Sargsyan},
title = {The structure of universal functions for $L^p$-spaces, $p\in(0,1)$},
journal = {Sbornik. Mathematics},
pages = {35--55},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/}
}
M. G. Grigoryan; A. A. Sargsyan. The structure of universal functions for $L^p$-spaces, $p\in(0,1)$. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 35-55. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/