The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 35-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper sheds light on the structure of functions which are universal for $L^p$-spaces, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. It is shown that there exists a measurable set $E\subset [0,1]$, whose measure is arbitrarily close to $1$, such that by an appropriate change of values of any function $f\in L^1[0,1]$ outside $E$ a function $\widetilde f\in L^1[0,1]$ can be obtained that is universal for each $L^p[0,1]$-space, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. Bibliography: 28 titles.
Keywords: universal function, Walsh system, convergence in a metric.
Mots-clés : Fourier coefficients
@article{SM_2018_209_1_a1,
     author = {M. G. Grigoryan and A. A. Sargsyan},
     title = {The structure of universal functions for $L^p$-spaces, $p\in(0,1)$},
     journal = {Sbornik. Mathematics},
     pages = {35--55},
     year = {2018},
     volume = {209},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - A. A. Sargsyan
TI  - The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 35
EP  - 55
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/
LA  - en
ID  - SM_2018_209_1_a1
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A A. A. Sargsyan
%T The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
%J Sbornik. Mathematics
%D 2018
%P 35-55
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/
%G en
%F SM_2018_209_1_a1
M. G. Grigoryan; A. A. Sargsyan. The structure of universal functions for $L^p$-spaces, $p\in(0,1)$. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 35-55. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/

[1] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl

[2] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2 (1952), 72–87 | DOI | MR | Zbl

[3] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl

[4] K. G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Diss., Univ. of Trier, 1987, Mitt. Math. Sem. Giessen, no. 176, Univ. Giessen Math. Inst., Giessen, 1987, iv+84 pp. | MR

[5] D. E. Menshov, “Ob universalnykh posledovatelnostyakh funktsii”, Matem. sb., 65(107):2 (1964), 272–312 | MR | Zbl

[6] A. A. Talalyan, “O ryadakh universalnykh otnositelno perestanovok”, Izv. AN SSSR. Ser. matem., 24:4 (1960), 567–604 | MR | Zbl

[7] P. L. Ul'yanov, “Representation of functions by series and classes $\varphi(L)$”, Russian Math. Surveys, 27:2 (1972), 1–54 | DOI | MR | Zbl

[8] A. M. Olevskii, “On some peculiarities of Fourier series in $L^p$ ($p2$)”, Math. USSR-Sb., 6:2 (1968), 233–239 | DOI | MR | Zbl

[9] V. I. Ivanov, “Representation of functions by series in metric symmetric spaces without linear functionals”, Proc. Steklov Inst. Math., 189 (1990), 37–85 | MR | Zbl

[10] V. G. Krotov, “Universal Fourier series according to the Faber–Schauder system”, Moscow Univ. Math. Bull., 30:3-4 (1975), 101–105 | MR | Zbl

[11] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Studia Math., 134:3 (1999), 207–216 | DOI | MR | Zbl

[12] M. G. Grigorian, S. A. Episkoposian, “On universal trigonometric series in weighted spaces ${L}^p_\mu[0,2\pi]$”, East J. Approx., 5:4 (1999), 483–492 | MR | Zbl

[13] M. G. Grigoryan, “On orthogonal series universal in $L^p_{[0,1]}$, $p>0$”, J. Contemp. Math. Anal., 37:2 (2002), 16–29 | MR | Zbl

[14] M. G. Grigoryan, “Nonlinear approximation by the trigonometric system in weighted $L^p_\mu$ spaces”, J. Contemp. Math. Anal., 50:3 (2015), 128–140 | DOI | MR | Zbl

[15] M. G. Grigoryan, K. A. Navasardyan, “On behavior of Fourier coefficients by Walsh system”, J. Contemp. Math. Anal., 51:1 (2016), 21–33 | DOI | MR | Zbl

[16] M. G. Grigoryan, A. A. Sargsyan, “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:8 (2016), 3111–3133 | DOI | MR | Zbl

[17] G. G. Gevorkyan, K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. Math., 63:1 (1999), 37–55 | DOI | DOI | MR | Zbl

[18] K. A. Navasardyan, “Series with monotone coefficients in the Walsh system”, J. Contemp. Math. Anal., 42:5 (2007), 258–269 | DOI | MR | Zbl

[19] S. A. Episkoposyan, “Existence of universal series by the Walsh system”, J. Contemp. Math. Anal., 38:4 (2003), 21–33 | MR | Zbl

[20] S. A. Episkoposian, “On the existence of universal series by trigonometric system”, J. Funct. Anal., 230:1 (2006), 169–183 | DOI | MR | Zbl

[21] N. N. Luzin', “K' osnovnoi teoremѣ integralnago ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | Zbl

[22] D. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Matem. sb., 11(53):1-2 (1942), 67–96 | MR | Zbl

[23] S. V. Kislyakov, “A new correction theorem”, Math. USSR-Izv., 24:2 (1985), 283–305 | DOI | MR | Zbl

[24] M. G. Grigorian, “On the convergence of Fourier series in the metric of $L^{1}$”, Anal. Math., 17:3 (1991), 211–237 | DOI | MR | Zbl

[25] M. G. Grigorian, “On the strong $L^p_\mu$-property of orthonormal systems”, Sb. Math., 194:10 (2003), 1503–1532 | DOI | DOI | MR | Zbl

[26] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[27] K. A. Navasardyan, “On null-series by double Walsh system”, J. Contemp. Math. Anal., 29:1 (1994), 50–68 | MR | Zbl

[28] M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083 | DOI | DOI | MR | Zbl