The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 35-55

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper sheds light on the structure of functions which are universal for $L^p$-spaces, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. It is shown that there exists a measurable set $E\subset [0,1]$, whose measure is arbitrarily close to $1$, such that by an appropriate change of values of any function $f\in L^1[0,1]$ outside $E$ a function $\widetilde f\in L^1[0,1]$ can be obtained that is universal for each $L^p[0,1]$-space, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. Bibliography: 28 titles.
Keywords: universal function, Walsh system, convergence in a metric.
Mots-clés : Fourier coefficients
@article{SM_2018_209_1_a1,
     author = {M. G. Grigoryan and A. A. Sargsyan},
     title = {The structure of universal functions for $L^p$-spaces, $p\in(0,1)$},
     journal = {Sbornik. Mathematics},
     pages = {35--55},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - A. A. Sargsyan
TI  - The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 35
EP  - 55
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/
LA  - en
ID  - SM_2018_209_1_a1
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A A. A. Sargsyan
%T The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
%J Sbornik. Mathematics
%D 2018
%P 35-55
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/
%G en
%F SM_2018_209_1_a1
M. G. Grigoryan; A. A. Sargsyan. The structure of universal functions for $L^p$-spaces, $p\in(0,1)$. Sbornik. Mathematics, Tome 209 (2018) no. 1, pp. 35-55. http://geodesic.mathdoc.fr/item/SM_2018_209_1_a1/