Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1690-1727
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We introduce a new class of billiards—billiard books, which are integrable Hamiltonian systems. It turns out that for any nondegenerate three-dimensional bifurcation (3-atom), a billiard book can be algorithmically constructed in which such a bifurcation appears. Consequently, any integrable Hamiltonian nondegenerate dynamical system with two degrees of freedom can be modelled in some neighbourhood of a critical leaf of the Liouville foliation in the iso-energy 3-manifold by a billiard.
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable system
Mots-clés : billiard, Liouville equivalence, Fomenko-Zieschang invariant.
                    
                  
                
                
                Mots-clés : billiard, Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2018_209_12_a1,
     author = {V. V. Vedyushkina and I. S. Kharcheva},
     title = {Billiard books model all three-dimensional bifurcations of integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {1690--1727},
     publisher = {mathdoc},
     volume = {209},
     number = {12},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a1/}
}
                      
                      
                    TY - JOUR AU - V. V. Vedyushkina AU - I. S. Kharcheva TI - Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems JO - Sbornik. Mathematics PY - 2018 SP - 1690 EP - 1727 VL - 209 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a1/ LA - en ID - SM_2018_209_12_a1 ER -
%0 Journal Article %A V. V. Vedyushkina %A I. S. Kharcheva %T Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems %J Sbornik. Mathematics %D 2018 %P 1690-1727 %V 209 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a1/ %G en %F SM_2018_209_12_a1
V. V. Vedyushkina; I. S. Kharcheva. Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1690-1727. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a1/
