Central extensions of free periodic groups
Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1677-1689
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that any countable abelian group $D$ can be embedded as a centre into a $m$-generated group $A$ such that the quotient group $A/D$ is isomorphic to the free Burnside group $B(m,n)$ of rank $m>1$ and of odd period $n\geqslant665$. The proof is based on a certain modification of the method that was used by Adian in his monograph in 1975 for a positive solution of Kontorovich's famous problem from the Kourovka Notebook on the existence of a finitely generated noncommutative analogue of the additive group of rational numbers with any number $m>1$ of generators (in contrast to the abelian case). More precisely, he proved that the desired analogues in which the intersection of any two non-trivial subgroups is infinite, can be constructed as a central extension of the free Burnside group $B (m, n)$, where $m> 1$, and $n\geqslant665$ is an odd number, using the infinite cyclic group as its centre. The paper also discusses other applications of the proposed generalization of Adian's technique. In particular, the free groups of the variety defined by the identity $[x^n,y]=1$ and the Schur multipliers of the free Burnside groups $B(m,n)$ for any odd $n\geqslant665$ are described. Bibliography: 14 titles.
Keywords: free Burnside group, central extension, additive group of rational numbers
Mots-clés : Schur multiplier.
@article{SM_2018_209_12_a0,
     author = {S. I. Adian and V. S. Atabekyan},
     title = {Central extensions of free periodic groups},
     journal = {Sbornik. Mathematics},
     pages = {1677--1689},
     year = {2018},
     volume = {209},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_12_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - V. S. Atabekyan
TI  - Central extensions of free periodic groups
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1677
EP  - 1689
VL  - 209
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_12_a0/
LA  - en
ID  - SM_2018_209_12_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A V. S. Atabekyan
%T Central extensions of free periodic groups
%J Sbornik. Mathematics
%D 2018
%P 1677-1689
%V 209
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2018_209_12_a0/
%G en
%F SM_2018_209_12_a0
S. I. Adian; V. S. Atabekyan. Central extensions of free periodic groups. Sbornik. Mathematics, Tome 209 (2018) no. 12, pp. 1677-1689. http://geodesic.mathdoc.fr/item/SM_2018_209_12_a0/

[1] S. I. Adjan, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, xi+311 pp. | MR | MR | Zbl | Zbl

[2] S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71 | DOI | DOI | MR | Zbl

[3] S. I. Adjan, “On some torsion-free groups”, Math. USSR-Izv., 5:3 (1971), 475–484 | DOI | MR | Zbl

[4] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 18-e izd., eds. V. D. Mazurov, E. I. Khukhro, Izd-vo In-ta matem. SO RAN, Novosibirsk, 2014, 227 pp. | MR | Zbl

[5] S. I. Adian, “Classifications of periodic words and their application in group theory”, Burnside groups, Proc. Workshop (Univ. Bielefeld, Bielefeld, 1977), Lecture Notes in Math., 806, Springer, Berlin, 1980, 1–40 | DOI | MR | Zbl

[6] A. Yu. Olshanskii, “Zamechanie o schetnoi netopologiziruemoi gruppe”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1980, no. 3, 103

[7] A. Kh. Zhurtov, D. V. Lytkina, V. D. Mazurov, A. I. Sozutov, “Periodic groups acting freely on abelian groups”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S209–S215 | DOI | MR | Zbl

[8] S. I. Adian, V. S. Atabekyan, “Periodic products of groups”, J. Contemp. Math. Anal., 52:3 (2017), 111–117 | DOI | MR | Zbl

[9] S. I. Adian, V. S. Atabekyan, “On free groups in the infinitely based varieties of S. I. Adian”, Izv. Math., 81:5 (2017), 889–900 | DOI | DOI | MR | Zbl

[10] G. Higman, B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. London Math. Soc., 24:4 (1949), 247–254 | DOI | MR | Zbl

[11] V. H. Mikaelian, “On a problem on explicit embeddings of the group $\mathbb{Q}$”, Int. J. Math. Math. Sci., 2005:13 (2005), 2119–2123 | DOI | MR | Zbl

[12] V. S. Guba, “A finitely generated complete group”, Math. USSR-Izv., 29:2 (1987), 233–277 | DOI | MR | Zbl

[13] I. S. Ashmanov, A. Yu. Ol'shanskiǐ, “On Abelian and central extensions of aspherical groups”, Soviet Math. (Iz. VUZ), 29:11 (1985), 65–82 | MR | Zbl

[14] A. Yu. Ol'shanskii, Geometry of defining relations in groups, Math. Appl. (Soviet Ser.), 70, Kluwer Acad. Publ., Dordrecht, 1991, xxvi+505 pp. | DOI | MR | MR | Zbl | Zbl