Mots-clés : orthocentre, Euler line.
@article{SM_2018_209_10_a5,
author = {A. M. Shelekhov},
title = {An elementary proof of {Poncelet's} theorem on bicentric polygons},
journal = {Sbornik. Mathematics},
pages = {1533--1546},
year = {2018},
volume = {209},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/}
}
A. M. Shelekhov. An elementary proof of Poncelet's theorem on bicentric polygons. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1533-1546. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/
[1] M. Berger, Géométrie, v. 1–3, CEDIC, Paris; Nathan Information, Paris, 1977, 192 pp., 214 pp., 184 pp. | MR | MR | MR | MR | Zbl | Zbl
[2] M. Berger, Géométrie, v. 4, 5, CEDIC, Paris; Nathan Information, Paris, 1977, 218 pp., 189 pp. | MR | MR | MR | Zbl | Zbl
[3] E. Diomidov, A. Zaslavskii, V. Kalashnikov, P. Kozhevnikov, G. Chelnokov, Vokrug teoremy Ponsele, 2014, 5 pp. http://www.turgor.ru/lktg/2014/6/6-1ru.pdf
[4] Matematika v zadachakh, Sb. materialov vyezdnykh shkol komandy Moskvy na Vserossiiskuyu matematicheskuyu olimpiadu, eds. A. A. Zaslavskii, D. A. Permyakov, A. B. Skopenkov, M. B. Skopenkov, A. V. Shapovalov, MTsNMO, M., 2009, 488 pp.
[5] E. A. Avksent'ev, “Metric properties of Poncelet polygonal lines”, Moscow Univ. Math. Bull., 67:3 (2012), 116–120 | DOI | MR | Zbl
[6] V. Protasov, “Dva veka teoremy Ponsele”, Kvant, 2014, no. 5-6, 2–12