An elementary proof of Poncelet's theorem on bicentric polygons
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1533-1546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a new proof of Poncelet's theorem on bicentric polygons, using a generalisation of the notion of an orthocentre for an $n$-gon. We indicate some properties of bicentric polygons and find generalisations of Euler's formula connecting the radii of the inscribed and circumscribed circles and the distance between their centres for convex $n$-gons with $n=4, 5, 6$, and also for a non-convex pentagon. In conclusion, we consider a construction of three related bicentric pentagons. Bibliography: 6 titles.
Keywords: Poncelet's theorem on bicentric polygons
Mots-clés : orthocentre, Euler line.
@article{SM_2018_209_10_a5,
     author = {A. M. Shelekhov},
     title = {An elementary proof of {Poncelet's} theorem on bicentric polygons},
     journal = {Sbornik. Mathematics},
     pages = {1533--1546},
     year = {2018},
     volume = {209},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - An elementary proof of Poncelet's theorem on bicentric polygons
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1533
EP  - 1546
VL  - 209
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/
LA  - en
ID  - SM_2018_209_10_a5
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T An elementary proof of Poncelet's theorem on bicentric polygons
%J Sbornik. Mathematics
%D 2018
%P 1533-1546
%V 209
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/
%G en
%F SM_2018_209_10_a5
A. M. Shelekhov. An elementary proof of Poncelet's theorem on bicentric polygons. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1533-1546. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/

[1] M. Berger, Géométrie, v. 1–3, CEDIC, Paris; Nathan Information, Paris, 1977, 192 pp., 214 pp., 184 pp. | MR | MR | MR | MR | Zbl | Zbl

[2] M. Berger, Géométrie, v. 4, 5, CEDIC, Paris; Nathan Information, Paris, 1977, 218 pp., 189 pp. | MR | MR | MR | Zbl | Zbl

[3] E. Diomidov, A. Zaslavskii, V. Kalashnikov, P. Kozhevnikov, G. Chelnokov, Vokrug teoremy Ponsele, 2014, 5 pp. http://www.turgor.ru/lktg/2014/6/6-1ru.pdf

[4] Matematika v zadachakh, Sb. materialov vyezdnykh shkol komandy Moskvy na Vserossiiskuyu matematicheskuyu olimpiadu, eds. A. A. Zaslavskii, D. A. Permyakov, A. B. Skopenkov, M. B. Skopenkov, A. V. Shapovalov, MTsNMO, M., 2009, 488 pp.

[5] E. A. Avksent'ev, “Metric properties of Poncelet polygonal lines”, Moscow Univ. Math. Bull., 67:3 (2012), 116–120 | DOI | MR | Zbl

[6] V. Protasov, “Dva veka teoremy Ponsele”, Kvant, 2014, no. 5-6, 2–12