An elementary proof of Poncelet's theorem on bicentric polygons
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1533-1546
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give a new proof of Poncelet's theorem on bicentric polygons, using a generalisation of the notion of an orthocentre for an $n$-gon. We indicate some properties of bicentric polygons and find generalisations of Euler's formula connecting the radii of the inscribed and circumscribed circles and the distance between their centres for convex $n$-gons with $n=4, 5, 6$, and also for a non-convex pentagon. In conclusion, we consider a construction of three related bicentric pentagons.
Bibliography: 6 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Poncelet's theorem on bicentric polygons
Mots-clés : orthocentre, Euler line.
                    
                  
                
                
                Mots-clés : orthocentre, Euler line.
@article{SM_2018_209_10_a5,
     author = {A. M. Shelekhov},
     title = {An elementary proof of {Poncelet's} theorem on bicentric polygons},
     journal = {Sbornik. Mathematics},
     pages = {1533--1546},
     publisher = {mathdoc},
     volume = {209},
     number = {10},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/}
}
                      
                      
                    A. M. Shelekhov. An elementary proof of Poncelet's theorem on bicentric polygons. Sbornik. Mathematics, Tome 209 (2018) no. 10, pp. 1533-1546. http://geodesic.mathdoc.fr/item/SM_2018_209_10_a5/
