Stable perturbations of linear differential equations generating a uniformly bounded group
Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1246-1259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stability problems for solutions of the differential equation $u'(t)=Au+\varepsilon B(t,u)$ in a Banach space are considered. It is assumed that for $\varepsilon=0$ this equation generates a uniformly bounded group of class $C_0$. Sufficient conditions on $B$ and $A$ are found under which the solutions of this equation are bounded for small $\varepsilon$. A linearization principle is proved for this equation under certain conditions on the operator $B$. Bibliography: 9 titles.
Keywords: differential equations in a Banach space, stability of solutions.
@article{SM_2017_208_8_a7,
     author = {V. V. Skazka},
     title = {Stable perturbations of linear differential equations generating a~uniformly bounded group},
     journal = {Sbornik. Mathematics},
     pages = {1246--1259},
     year = {2017},
     volume = {208},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_8_a7/}
}
TY  - JOUR
AU  - V. V. Skazka
TI  - Stable perturbations of linear differential equations generating a uniformly bounded group
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1246
EP  - 1259
VL  - 208
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_8_a7/
LA  - en
ID  - SM_2017_208_8_a7
ER  - 
%0 Journal Article
%A V. V. Skazka
%T Stable perturbations of linear differential equations generating a uniformly bounded group
%J Sbornik. Mathematics
%D 2017
%P 1246-1259
%V 208
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2017_208_8_a7/
%G en
%F SM_2017_208_8_a7
V. V. Skazka. Stable perturbations of linear differential equations generating a uniformly bounded group. Sbornik. Mathematics, Tome 208 (2017) no. 8, pp. 1246-1259. http://geodesic.mathdoc.fr/item/SM_2017_208_8_a7/

[1] V. V. Skazka, “The continuous spectrum and the effect of parametric resonance. The case of bounded operators”, Sb. Math., 205:5 (2014), 684–702 | DOI | DOI | MR | Zbl

[2] V. S. Belonosov, V. N. Dorovskii, A. S. Belonosov, S. V. Dorovskii, “Gidrodinamika gazosoderzhaschikh sloistykh sistem”, Uspekhi mekhaniki, 3:2 (2005), 37–70

[3] V. S. Belonosov, “The spectral properties of distributions and asymptotic methods in perturbation theory”, Sb. Math., 203:3 (2012), 307–325 | DOI | DOI | MR | Zbl

[4] V. I. Derguzov, “Ob ustoichivosti reshenii uravnenii Gamiltona s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Matem. sb., 63(105):4 (1964), 591–619 | MR | Zbl

[5] V. I. Derguzov, “Dostatochnye usloviya ustoichivosti gamiltonovykh uravnenii s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Matem. sb., 64(106):3 (1964), 419–435 | MR | Zbl

[6] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, RI, 1957, xii+808 pp. | MR | MR | Zbl

[7] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[8] Yu. L. Daletskii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl

[9] A. B. Vasileva, N. A. Tikhonov, Integralnye uravneniya, Uchebnik, 3-e izd., Lan, SPb., 2009 | Zbl