Selections of the metric projection operator and strict solarity of sets with continuous metric projection
Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 915-928

Voir la notice de l'article provenant de la source Math-Net.Ru

In a broad class of finite-dimensional Banach spaces, we show that a closed set with lower semicontinuous metric projection is a strict sun, admits a continuous selection of the metric projection operator onto it, has contractible intersections with balls, and its (nonempty) intersection with any closed ball is a retract of this ball. For sets with continuous metric projection, a number of new results relating the solarity of such sets to the stability of the operator of best approximation are obtained. Bibliography 25 titles.
Keywords: sun, strict sun, monotone path-connected set, lower semicontinuous metric projection, selection of the metric projection.
@article{SM_2017_208_7_a0,
     author = {A. R. Alimov},
     title = {Selections of the metric projection operator and strict solarity of sets with continuous metric projection},
     journal = {Sbornik. Mathematics},
     pages = {915--928},
     publisher = {mathdoc},
     volume = {208},
     number = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_7_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Selections of the metric projection operator and strict solarity of sets with continuous metric projection
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 915
EP  - 928
VL  - 208
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_7_a0/
LA  - en
ID  - SM_2017_208_7_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Selections of the metric projection operator and strict solarity of sets with continuous metric projection
%J Sbornik. Mathematics
%D 2017
%P 915-928
%V 208
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_7_a0/
%G en
%F SM_2017_208_7_a0
A. R. Alimov. Selections of the metric projection operator and strict solarity of sets with continuous metric projection. Sbornik. Mathematics, Tome 208 (2017) no. 7, pp. 915-928. http://geodesic.mathdoc.fr/item/SM_2017_208_7_a0/