Flexibility of affine horospherical varieties of semisimple groups
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 285-310

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be an algebraically closed field of characteristic zero and $\mathbb{G}_a=(k,+)$ the additive group of $k$. An algebraic variety $X$ is said to be flexible if the tangent space at every regular point of $X$ is generated by the tangent vectors to orbits of various regular actions of $\mathbb{G}_a$. In 1972, Vinberg and Popov introduced the class of affine $S$-varieties which are also known as affine horospherical varieties. These are varieties on which a connected algebraic group acts with an open orbit in such a way that the stationary subgroup of each point in the orbit contains a maximal unipotent subgroup of $G$. In this paper the flexibility of affine horospherical varieties of semisimple groups is proved. Bibliography: 9 titles.
Keywords: algebraic groups, affine horospherical varieties, flexibility.
@article{SM_2017_208_2_a6,
     author = {A. A. Shafarevich},
     title = {Flexibility of affine horospherical varieties of semisimple groups},
     journal = {Sbornik. Mathematics},
     pages = {285--310},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/}
}
TY  - JOUR
AU  - A. A. Shafarevich
TI  - Flexibility of affine horospherical varieties of semisimple groups
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 285
EP  - 310
VL  - 208
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/
LA  - en
ID  - SM_2017_208_2_a6
ER  - 
%0 Journal Article
%A A. A. Shafarevich
%T Flexibility of affine horospherical varieties of semisimple groups
%J Sbornik. Mathematics
%D 2017
%P 285-310
%V 208
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/
%G en
%F SM_2017_208_2_a6
A. A. Shafarevich. Flexibility of affine horospherical varieties of semisimple groups. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 285-310. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/