Flexibility of affine horospherical varieties of semisimple groups
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 285-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $k$ be an algebraically closed field of characteristic zero and $\mathbb{G}_a=(k,+)$ the additive group of $k$. An algebraic variety $X$ is said to be flexible if the tangent space at every regular point of $X$ is generated by the tangent vectors to orbits of various regular actions of $\mathbb{G}_a$. In 1972, Vinberg and Popov introduced the class of affine $S$-varieties which are also known as affine horospherical varieties. These are varieties on which a connected algebraic group acts with an open orbit in such a way that the stationary subgroup of each point in the orbit contains a maximal unipotent subgroup of $G$. In this paper the flexibility of affine horospherical varieties of semisimple groups is proved. Bibliography: 9 titles.
Keywords: algebraic groups, affine horospherical varieties, flexibility.
@article{SM_2017_208_2_a6,
     author = {A. A. Shafarevich},
     title = {Flexibility of affine horospherical varieties of semisimple groups},
     journal = {Sbornik. Mathematics},
     pages = {285--310},
     year = {2017},
     volume = {208},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/}
}
TY  - JOUR
AU  - A. A. Shafarevich
TI  - Flexibility of affine horospherical varieties of semisimple groups
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 285
EP  - 310
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/
LA  - en
ID  - SM_2017_208_2_a6
ER  - 
%0 Journal Article
%A A. A. Shafarevich
%T Flexibility of affine horospherical varieties of semisimple groups
%J Sbornik. Mathematics
%D 2017
%P 285-310
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/
%G en
%F SM_2017_208_2_a6
A. A. Shafarevich. Flexibility of affine horospherical varieties of semisimple groups. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 285-310. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a6/

[1] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR | Zbl

[2] I. V. Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity”, Sb. Math., 203:7 (2012), 923–949 | DOI | DOI | MR | Zbl

[3] A. Yu. Perepechko, “Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5”, Funct. Anal. Appl., 47:4 (2013), 284–289 | DOI | DOI | MR | Zbl

[4] È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl

[5] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl

[6] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Infinite transitivity on affine varieties”, Birational geometry, rational curves, and arithmetic, Springer, New York, 2013, 1–13 | DOI | MR | Zbl

[7] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant theory and algebraic transformation groups, VII, Springer-Verlag, Berlin, 2006, xii+261 pp. | MR | Zbl

[8] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990, xx+328 pp. | DOI | MR | MR | Zbl | Zbl

[9] V. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–312 | MR | Zbl