Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 255-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for a bounded solution of the nonlinear scalar differential equation $dx(t)/dt=f(x(t)+h_1(t))+h_2(t)$, $t\in\mathbb{R}$, to exist and be unique are presented in the case when $f(x)$ is a continuous function and the functions $h_1(t)$ and $h_2(t)$ are bounded and continuous. The case when $h_1(t)$ and $h_2(t)$ are almost periodic functions is also investigated. Bibliography: 31 titles.
Keywords: nonlinear differential equations, bounded and almost periodic solutions.
@article{SM_2017_208_2_a4,
     author = {V. E. Slyusarchuk},
     title = {Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$},
     journal = {Sbornik. Mathematics},
     pages = {255--268},
     year = {2017},
     volume = {208},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 255
EP  - 268
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/
LA  - en
ID  - SM_2017_208_2_a4
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
%J Sbornik. Mathematics
%D 2017
%P 255-268
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/
%G en
%F SM_2017_208_2_a4
V. E. Slyusarchuk. Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 255-268. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/

[1] S. Bochner, “Beitrage zur Theorie der fastperiodischen Funktionen. I Teil. Funktionen einer Variablen”, Math. Ann., 96:1 (1927), 119–147 | DOI | MR | Zbl

[2] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[3] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129, ix+128 pp. | MR | MR | MR | Zbl | Zbl

[4] L. Nirenberg, Topics in nonlinear functional analysis, Courant Inst. of Math. Sci., New York Univ., New York, 1974, viii+259 pp. | MR | MR | Zbl | Zbl

[5] V. E. Slyusarchuk, “Neobkhodimye i dostatochnye usloviya suschestvovaniya i edinstvennosti ogranichennykh reshenii nelineinykh differentsialnykh uravnenii”, Neliniini kolivannya, 2:4 (1999), 523–539 | MR | Zbl

[6] V. E. Slyusarchuk, “Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations”, Acta Appl. Math., 65:1-3 (2001), 333–341 | DOI | MR | Zbl

[7] V. E. Slyusarchuk, “Conditions for the existence of bounded solutions of non-linear differential equations”, Russian Math. Surveys, 54:4 (1999), 852–853 | DOI | DOI | MR | Zbl

[8] V. E. Slyusarchuk, “Necessary and sufficient conditions of the Lipschitz invertibility of the nonlinear differential operator $d/dt-f$ in the space of bounded functions on the real axis”, Nonlinear Oscil., 4:2 (2001), 272–277 | MR | Zbl

[9] V. E. Slyusarchuk, “Necessary and sufficient conditions for the Lipschitzian invertibility of the nonlinear differential mapping $d/dt-f$ in the spaces $L_p({\mathbb R},{\mathbb R})$, $1\le p\le\infty$”, Math. Notes, 73:6 (2003), 843–854 | DOI | DOI | MR | Zbl

[10] R. Reissig, G. Sansone, R. Conti, Qualitative Theorie nichtlinearer Differentialgleichungen, Edizioni Cremonese, Rome, 1963, xxxii+381 pp. | MR | MR | Zbl

[11] V. Yu. Slyusarchuk, “Umovi obmezhenosti rozv'yazkiv neliniinogo diferentsialnogo rivnyannya $x''+F(x',x)=y(t)$”, Naukovii visnik Chernivetskogo universitetu. Matematika, 2:1 (2012), 108–119 | Zbl

[12] M. A. Krasnosel'skiĭ, V. Sh. Burd, Yu. S. Kolesov, Nonlinear almost periodic oscillations, Halsted Press [A division of John Wiley Sons], New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1973, x+326 pp. | MR | MR | Zbl | Zbl

[13] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986, 200 pp. | MR | Zbl

[14] V. Yu. Slyusarchuk, “Method of local linear approximation in the theory of bounded solutions of nonlinear differential equations”, Ukrainian Math. J., 61:11 (2009), 1809–1829 | DOI | MR | Zbl

[15] V. E. Slyusarchuk, “The method of local linear approximation in the theory of nonlinear functional-differential equations”, Sb. Math., 201:8 (2010), 1193–1215 | DOI | DOI | MR | Zbl

[16] V. Yu. Slyusarchuk, “Method of local linear approximation of nonlinear differential operators by weakly regular operators”, Ukrainian Math. J., 63:12 (2012), 1916–1932 | DOI | MR | Zbl

[17] V. Yu. Slyusarchuk, Metod lokalnoï liniinoï aproksimatsiï v teoriï neliniinikh rivnyan, Natsionalnii universitet vodnogo gospodarstva ta prirodokoristuvannya, Rivne, 2011, 342 pp.

[18] V. E. Slyusarchuk, “Bounded and periodic solutions of nonlinear functional differential equations”, Sb. Math., 203:5 (2012), 743–767 | DOI | DOI | MR | Zbl

[19] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1928), 31–81 | DOI | MR | Zbl

[20] L. Amerio, “Soluzioni quasi-periodiche, o limital, di sistemi differenziali non lineari quasi-periodici, o limitati”, Ann. Mat. Pura Appl. (4), 39 (1955), 97–119 | DOI | MR | Zbl

[21] V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear differential equations in Banach spaces”, Ukrainian Math. J., 65:2 (2013), 341–347 | DOI | MR | Zbl

[22] V. Yu. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of nonlinear differential equations unsolved with respect to the derivative”, Ukrainian Math. J., 66:3 (2014), 432–442 | DOI | MR | Zbl

[23] V. E. Slyusarchuk, “The study of nonlinear almost periodic differential equations without recourse to the $\mathscr H$-classes of these equations”, Sb. Math., 205:6 (2014), 892–911 | DOI | DOI | MR | Zbl

[24] V. E. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations”, Izv. Math., 78:6 (2014), 1232–1243 | DOI | DOI | MR | Zbl

[25] É. Mukhamadiev, “On the inversion of functional operators in a space of functions bounded on the axes”, Math. Notes, 11:3 (1972), 169–172 | DOI | MR | Zbl

[26] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl

[27] V. V. Zhikov, “Proof of the Favard theorem on the existence of almost-periodic solution for an arbitrary Banach space”, Math. Notes, 23:1 (1978), 66–69 | DOI | MR | Zbl

[28] V. E. Slyusarchuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | DOI | MR | Zbl

[29] V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | DOI | MR | Zbl

[30] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of nonautonomous functional-differential operators”, Math. Notes, 42:2 (1987), 648–651 | DOI | MR | Zbl

[31] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of uniformly $c$-continuous functional-differential operators”, Ukrainian Math. J., 41:2 (1989), 180–183 | DOI | MR | Zbl