Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 255-268
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions for a bounded solution of the nonlinear scalar differential equation $dx(t)/dt=f(x(t)+h_1(t))+h_2(t)$, $t\in\mathbb{R}$, to exist and be unique are presented in the case when $f(x)$ is a continuous function and the functions $h_1(t)$ and $h_2(t)$ are bounded and continuous. The case when $h_1(t)$ and $h_2(t)$ are almost periodic functions is also investigated.
Bibliography: 31 titles.
Keywords:
nonlinear differential equations, bounded and almost periodic solutions.
@article{SM_2017_208_2_a4,
author = {V. E. Slyusarchuk},
title = {Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$},
journal = {Sbornik. Mathematics},
pages = {255--268},
publisher = {mathdoc},
volume = {208},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/}
}
TY - JOUR
AU - V. E. Slyusarchuk
TI - Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
JO - Sbornik. Mathematics
PY - 2017
SP - 255
EP - 268
VL - 208
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/
LA - en
ID - SM_2017_208_2_a4
ER -
%0 Journal Article
%A V. E. Slyusarchuk
%T Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
%J Sbornik. Mathematics
%D 2017
%P 255-268
%V 208
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/
%G en
%F SM_2017_208_2_a4
V. E. Slyusarchuk. Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 255-268. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a4/