@article{SM_2016_207_9_a4,
author = {P. A. Terekhin},
title = {Affine {Riesz} bases and the dual function},
journal = {Sbornik. Mathematics},
pages = {1287--1318},
year = {2016},
volume = {207},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a4/}
}
P. A. Terekhin. Affine Riesz bases and the dual function. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1287-1318. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a4/
[1] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl | Zbl
[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl
[3] Ch. K. Chui, An introduction to wavelets, Wavelet analysis and its applications, 1, Academic Press, Inc., Boston, MA, 1992, x+264 pp. | MR | Zbl
[4] Bin Han, Rong-Qing Jia, “Characterization of Riesz bases of wavelets generated from multiresolution analysis”, Appl. Comput. Harmon. Anal., 23:3 (2007), 321–345 | DOI | MR | Zbl
[5] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd rev. ed., Birkhäuser/Springer, New York, NY, 2016, xxv+704 pp. | DOI | MR | Zbl
[6] V. N. Temlyakov, “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl
[7] V. N. Temlyakov, “Greedy approximation”, Acta Numer., 17 (2008), 235–409 | DOI | MR | Zbl
[8] T. P. Lukashenko, “Properties of orthorecursive expansions over nonorthogonal systems”, Mosc. Univ. Math. Bull., 56:1 (2001), 5–9 | MR | Zbl
[9] V. V. Galatenko, T. P. Lukashenko, V. A. Sadovnichii, “On the properties of orthorecursive expansions with respect to subspaces”, Proc. Steklov Inst. Math., 284 (2014), 129–132 | DOI | DOI | MR | Zbl
[10] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[11] P. A. Terekhin, “Banach frames in the affine synthesis problem”, Sb. Math., 200:9 (2009), 1383–1402 | DOI | DOI | MR | Zbl
[12] S. J. Dilworth, E. Odell, Th. Schlumprecht, A. Zsák, “Coefficient quantization in Banach spaces”, Found. Comput. Math., 8:6 (2008), 703–736 | DOI | MR | Zbl
[13] P. G. Casazza, S. J. Dilworth, E. Odell, Th. Schlumprecht, A. Zsak, “Coefficient quantization for frames in Banach spaces”, J. Math. Anal. Appl., 348:1 (2008), 66–86 | DOI | MR | Zbl
[14] P. A. Terekhin, “Riesz bases generated by contractions and translations of a function on an interval”, Math. Notes, 72:4 (2002), 505–518 | DOI | DOI | MR | Zbl
[15] A. Beurling, “On two problems concerning linear transformations on Hilbert space”, Acta Math., 81 (1949), 239–255 | DOI | MR | Zbl
[16] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl
[17] V. A. Mironov, A. M. Sarsenbi, P. A. Terekhin, “Affine Bessel sequences and Nikishin's example”, Filomat (to appear)
[18] A. M. Sarsenbi, P. A. Terekhin, “Riesz basicity for general systems of functions”, J. Funct. Spaces, 2014 (2014), 860279, 3 pp. | DOI | MR | Zbl
[19] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[20] B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó, Budapest; Masson et Cie, Paris, 1967, xi+373 pp. | MR | MR | Zbl | Zbl
[21] J. Cuntz, “Simple $C^{\ast}$-algebras generated by isometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl
[22] P. R. Halmos, “Shifts on Hilbert spaces”, J. Reine Angew. Math., 1961:208 (1961), 102–112 | DOI | MR | Zbl
[23] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | DOI | MR | Zbl
[24] P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400 | MR | Zbl
[25] P. A. Terekhin, “Convergence of biorthogonal series in the system of contractions and translations of functions in the spaces $L^p[0,1]$”, Math. Notes, 83:5 (2008), 657–674 | DOI | DOI | MR | Zbl