Affine Riesz bases and the dual function
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1287-1318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with systems of functions on the unit interval which are generated by dyadic dilations and integer translations of a given function. Similar systems have a wide range of applications in the theory of wavelets, in nonlinear, and in particular, in greedy approximations, in the representation of functions by series, in problems in numerical analysis, and so on. Conditions, and in some particular cases, criteria for the generating function are given for the system to be Besselian, to form a Riesz basis or to be an orthonormal system, and separately, to be complete. For this purpose, the concept of the dual function of the generating function of a system is introduced and studied. Some of the conditions given below are easy to verify in practice, as is demonstrated by examples. Bibliography: 25 titles.
Keywords: Riesz basis, Haar system, affine system of functions, system of dilations and translations.
@article{SM_2016_207_9_a4,
     author = {P. A. Terekhin},
     title = {Affine {Riesz} bases and the dual function},
     journal = {Sbornik. Mathematics},
     pages = {1287--1318},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a4/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Affine Riesz bases and the dual function
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1287
EP  - 1318
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a4/
LA  - en
ID  - SM_2016_207_9_a4
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Affine Riesz bases and the dual function
%J Sbornik. Mathematics
%D 2016
%P 1287-1318
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a4/
%G en
%F SM_2016_207_9_a4
P. A. Terekhin. Affine Riesz bases and the dual function. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1287-1318. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a4/

[1] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl | Zbl

[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl

[3] Ch. K. Chui, An introduction to wavelets, Wavelet analysis and its applications, 1, Academic Press, Inc., Boston, MA, 1992, x+264 pp. | MR | Zbl

[4] Bin Han, Rong-Qing Jia, “Characterization of Riesz bases of wavelets generated from multiresolution analysis”, Appl. Comput. Harmon. Anal., 23:3 (2007), 321–345 | DOI | MR | Zbl

[5] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd rev. ed., Birkhäuser/Springer, New York, NY, 2016, xxv+704 pp. | DOI | MR | Zbl

[6] V. N. Temlyakov, “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl

[7] V. N. Temlyakov, “Greedy approximation”, Acta Numer., 17 (2008), 235–409 | DOI | MR | Zbl

[8] T. P. Lukashenko, “Properties of orthorecursive expansions over nonorthogonal systems”, Mosc. Univ. Math. Bull., 56:1 (2001), 5–9 | MR | Zbl

[9] V. V. Galatenko, T. P. Lukashenko, V. A. Sadovnichii, “On the properties of orthorecursive expansions with respect to subspaces”, Proc. Steklov Inst. Math., 284 (2014), 129–132 | DOI | DOI | MR | Zbl

[10] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[11] P. A. Terekhin, “Banach frames in the affine synthesis problem”, Sb. Math., 200:9 (2009), 1383–1402 | DOI | DOI | MR | Zbl

[12] S. J. Dilworth, E. Odell, Th. Schlumprecht, A. Zsák, “Coefficient quantization in Banach spaces”, Found. Comput. Math., 8:6 (2008), 703–736 | DOI | MR | Zbl

[13] P. G. Casazza, S. J. Dilworth, E. Odell, Th. Schlumprecht, A. Zsak, “Coefficient quantization for frames in Banach spaces”, J. Math. Anal. Appl., 348:1 (2008), 66–86 | DOI | MR | Zbl

[14] P. A. Terekhin, “Riesz bases generated by contractions and translations of a function on an interval”, Math. Notes, 72:4 (2002), 505–518 | DOI | DOI | MR | Zbl

[15] A. Beurling, “On two problems concerning linear transformations on Hilbert space”, Acta Math., 81 (1949), 239–255 | DOI | MR | Zbl

[16] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[17] V. A. Mironov, A. M. Sarsenbi, P. A. Terekhin, “Affine Bessel sequences and Nikishin's example”, Filomat (to appear)

[18] A. M. Sarsenbi, P. A. Terekhin, “Riesz basicity for general systems of functions”, J. Funct. Spaces, 2014 (2014), 860279, 3 pp. | DOI | MR | Zbl

[19] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[20] B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó, Budapest; Masson et Cie, Paris, 1967, xi+373 pp. | MR | MR | Zbl | Zbl

[21] J. Cuntz, “Simple $C^{\ast}$-algebras generated by isometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl

[22] P. R. Halmos, “Shifts on Hilbert spaces”, J. Reine Angew. Math., 1961:208 (1961), 102–112 | DOI | MR | Zbl

[23] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | DOI | MR | Zbl

[24] P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400 | MR | Zbl

[25] P. A. Terekhin, “Convergence of biorthogonal series in the system of contractions and translations of functions in the spaces $L^p[0,1]$”, Math. Notes, 83:5 (2008), 657–674 | DOI | DOI | MR | Zbl