Mechanical systems with closed orbits on manifolds of revolution
Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 718-737

Voir la notice de l'article provenant de la source Math-Net.Ru

We study natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential. We obtain a classification of Riemannian manifolds of revolution and central potentials on them that have the strong Bertrand property: any nonsingular (that is, not contained in a meridian) orbit is closed. We also obtain a classification of manifolds of revolution and central potentials on them that have the ‘stable’ Bertrand property: every parallel is an ‘almost stable’ circular orbit, and any nonsingular bounded orbit is closed. Bibliography: 14 titles.
Keywords: Bertrand Riemannian manifold, surface of revolution, equator, Tannery manifold
Mots-clés : Maupertuis' principle.
@article{SM_2015_206_5_a4,
     author = {E. A. Kudryavtseva and D. A. Fedoseev},
     title = {Mechanical systems with closed orbits on manifolds of revolution},
     journal = {Sbornik. Mathematics},
     pages = {718--737},
     publisher = {mathdoc},
     volume = {206},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_5_a4/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - D. A. Fedoseev
TI  - Mechanical systems with closed orbits on manifolds of revolution
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 718
EP  - 737
VL  - 206
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_5_a4/
LA  - en
ID  - SM_2015_206_5_a4
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A D. A. Fedoseev
%T Mechanical systems with closed orbits on manifolds of revolution
%J Sbornik. Mathematics
%D 2015
%P 718-737
%V 206
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_5_a4/
%G en
%F SM_2015_206_5_a4
E. A. Kudryavtseva; D. A. Fedoseev. Mechanical systems with closed orbits on manifolds of revolution. Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 718-737. http://geodesic.mathdoc.fr/item/SM_2015_206_5_a4/