The largest critical point in the zero-one $k$-law
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 489-509

Voir la notice de l'article provenant de la source Math-Net.Ru

The largest value of $\alpha1$ is established for which the random graph $G(n,n^{-\alpha})$ does not obey the zero-one $k$-law for first-order properties. As was already known, the zero-one $k$-law is valid for all $\alpha>1-1/(2^{k}-2)$ with the exception of $1-1/(2^{k}-1)$, $1-1/2^{k}$. For $\alpha=1-1/(2^k-2)$ the law fails. In this work, it is shown that the law is valid for $\alpha\in\{1-1/(2^{k}-1),1-1/2^{k}\}$. Bibliography: 17 titles.
Keywords: zero-one law, random graph, first-order properties, the Ehrenfeucht game, bounded quantifier depth.
@article{SM_2015_206_4_a1,
     author = {M. E. Zhukovskii},
     title = {The largest critical point in the zero-one $k$-law},
     journal = {Sbornik. Mathematics},
     pages = {489--509},
     publisher = {mathdoc},
     volume = {206},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a1/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
TI  - The largest critical point in the zero-one $k$-law
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 489
EP  - 509
VL  - 206
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a1/
LA  - en
ID  - SM_2015_206_4_a1
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%T The largest critical point in the zero-one $k$-law
%J Sbornik. Mathematics
%D 2015
%P 489-509
%V 206
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a1/
%G en
%F SM_2015_206_4_a1
M. E. Zhukovskii. The largest critical point in the zero-one $k$-law. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 489-509. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a1/