The convergence of double Fourier-Haar series over homothetic copies of sets
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 983-1003 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the convergence of double Fourier-Haar series with partial sums taken over homothetic copies of a given bounded set $W\subset \mathbb{R}_+^2$ containing the intersection of some neighbourhood of the origin with $\mathbb{R}_+^2$. It is proved that for a set $W$ from a fairly broad class (in particular, for convex $W$) there are two alternatives: either the Fourier-Haar series of an arbitrary function $f\in L([0,1]^2)$ converges almost everywhere or $L\ln^+L([0,1]^2)$ is the best integral class in which the double Fourier-Haar series converges almost everywhere. Furthermore, a characteristic property is obtained, which distinguishes which of the two alternatives is realized for a given $W$. Bibliography: 12 titles.
Keywords: Fourier-Haar series, double series, lacunary series
Mots-clés : convergence.
@article{SM_2014_205_7_a3,
     author = {G. G. Oniani},
     title = {The convergence of double {Fourier-Haar} series over homothetic copies of sets},
     journal = {Sbornik. Mathematics},
     pages = {983--1003},
     year = {2014},
     volume = {205},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a3/}
}
TY  - JOUR
AU  - G. G. Oniani
TI  - The convergence of double Fourier-Haar series over homothetic copies of sets
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 983
EP  - 1003
VL  - 205
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a3/
LA  - en
ID  - SM_2014_205_7_a3
ER  - 
%0 Journal Article
%A G. G. Oniani
%T The convergence of double Fourier-Haar series over homothetic copies of sets
%J Sbornik. Mathematics
%D 2014
%P 983-1003
%V 205
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a3/
%G en
%F SM_2014_205_7_a3
G. G. Oniani. The convergence of double Fourier-Haar series over homothetic copies of sets. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 983-1003. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a3/

[1] T. Sh. Zerekidze, “Skhodimost kratnykh ryadov Fure–Khaara i silnaya differentsiruemost integralov”, Trudy Tbilis. matem. in-ta im. A. M. Razmadze AN GrSSR, 76 (1985), 80–99 | MR | Zbl

[2] G. G. Kemkhadze, “O skhodimosti sharovykh chastichnykh summ kratnykh ryadov Fure–Khaara”, Trudy Tbilis. matem. in-ta im. A. M. Razmadze AN GrSSR, 55 (1977), 27–38 | MR | Zbl

[3] G. E. Tkebuchava, “On the divergence of the spherical sums of double Fourier–Haar series”, Anal. Math., 20:2 (1994), 147–153 | DOI | MR | Zbl

[4] G. G. Oniani, “On the divergence of multiple Fourier–Haar series”, Anal. Math., 38:3 (2012), 227–247 | DOI | MR | Zbl

[5] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[6] S. Saks, Theory of the integral, Monografie Matematyczne, VII, 2nd ed., G. E. Stechert, New York, 1937, xvi+3437 pp. | MR | Zbl

[7] M. de Guzmán, Differentiation of integrals in $\mathbb R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 pp. | DOI | MR | MR | Zbl

[8] G. Oniani, “On the Fourier–Haar series convergence with respect to sets which are homothetic to the given set”, Proc. A. Razmadze Math. Inst., 126 (2001), 126–128 | MR | Zbl

[9] G. H. Hardy, “On the convergence of certain multiple series”, Proc. Cambridge Philos. Soc., 19 (1916–1919), 86–95

[10] F. Móricz, “On the convergence in a restricted sense of multiple series”, Anal. Math., 5:2 (1979), 135–147 | DOI | MR | Zbl

[11] G. G. Oniani, “On the convergence of multiple Haar series”, Izv. Math., 78:1 (2014), 90–105 | DOI | DOI | Zbl

[12] R. Getsadze, “On divergence of the general terms of the double Fourier–Haar series”, Arch. Math. (Basel), 86:4 (2006), 331–339 | DOI | MR | Zbl