On the geometry of a~smooth model of a~fibre product of families of K3 surfaces
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 269-276

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hodge conjecture on algebraic cycles is proved for a smooth projective model $X$ of a fibre product $X_1\times_C X_2$ of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) $X_{k} \to C$ ($k=1,2$) over a smooth projective curve $C$ under the assumption that, for generic geometric fibres $X_{1s}$ and $ X_{2s}$, the ring $\operatorname{End}_{\operatorname{Hg}(X_{1s})}\operatorname{NS}_{\mathbb Q}(X_{1s})^{\perp}$ is an imaginary quadratic field, $\operatorname{rank}\operatorname{NS}(X_{1s})\neq 18$, and $\operatorname{End}_{\operatorname{Hg}(X_{2s})}\operatorname{NS}_{\mathbb Q}(X_{2s})^{\perp}$ is a totally real field or else $\operatorname{rank}\operatorname{NS}(X_{1s}) \operatorname{rank}\operatorname{NS}(X_{2s})$. Bibliography: 10 titles.
Keywords: Hodge conjecture, K3 surface.
@article{SM_2014_205_2_a4,
     author = {O. V. Nikol'skaya},
     title = {On the geometry of a~smooth model of a~fibre product of families of {K3} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {205},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/}
}
TY  - JOUR
AU  - O. V. Nikol'skaya
TI  - On the geometry of a~smooth model of a~fibre product of families of K3 surfaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 269
EP  - 276
VL  - 205
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/
LA  - en
ID  - SM_2014_205_2_a4
ER  - 
%0 Journal Article
%A O. V. Nikol'skaya
%T On the geometry of a~smooth model of a~fibre product of families of K3 surfaces
%J Sbornik. Mathematics
%D 2014
%P 269-276
%V 205
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/
%G en
%F SM_2014_205_2_a4
O. V. Nikol'skaya. On the geometry of a~smooth model of a~fibre product of families of K3 surfaces. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/