On the geometry of a~smooth model of a~fibre product of families of K3 surfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 269-276
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Hodge conjecture on algebraic cycles is proved for a smooth projective model $X$ of a fibre product $X_1\times_C X_2$ of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) $X_{k} \to C$ ($k=1,2$) over a smooth projective curve $C$ under the assumption that, for generic geometric fibres $X_{1s}$ and $ X_{2s}$, the ring $\operatorname{End}_{\operatorname{Hg}(X_{1s})}\operatorname{NS}_{\mathbb Q}(X_{1s})^{\perp}$ is an imaginary quadratic field, $\operatorname{rank}\operatorname{NS}(X_{1s})\neq 18$, and $\operatorname{End}_{\operatorname{Hg}(X_{2s})}\operatorname{NS}_{\mathbb Q}(X_{2s})^{\perp}$ is a totally real field or else $\operatorname{rank}\operatorname{NS}(X_{1s})  \operatorname{rank}\operatorname{NS}(X_{2s})$.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hodge conjecture, K3 surface.
                    
                    
                    
                  
                
                
                @article{SM_2014_205_2_a4,
     author = {O. V. Nikol'skaya},
     title = {On the geometry of a~smooth model of a~fibre product of families of {K3} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {205},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/}
}
                      
                      
                    O. V. Nikol'skaya. On the geometry of a~smooth model of a~fibre product of families of K3 surfaces. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/
