On the geometry of a smooth model of a fibre product of families of K3 surfaces
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 269-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hodge conjecture on algebraic cycles is proved for a smooth projective model $X$ of a fibre product $X_1\times_C X_2$ of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) $X_{k} \to C$ ($k=1,2$) over a smooth projective curve $C$ under the assumption that, for generic geometric fibres $X_{1s}$ and $ X_{2s}$, the ring $\operatorname{End}_{\operatorname{Hg}(X_{1s})}\operatorname{NS}_{\mathbb Q}(X_{1s})^{\perp}$ is an imaginary quadratic field, $\operatorname{rank}\operatorname{NS}(X_{1s})\neq 18$, and $\operatorname{End}_{\operatorname{Hg}(X_{2s})}\operatorname{NS}_{\mathbb Q}(X_{2s})^{\perp}$ is a totally real field or else $\operatorname{rank}\operatorname{NS}(X_{1s}) < \operatorname{rank}\operatorname{NS}(X_{2s})$. Bibliography: 10 titles.
Keywords: Hodge conjecture, K3 surface.
@article{SM_2014_205_2_a4,
     author = {O. V. Nikol'skaya},
     title = {On the geometry of a~smooth model of a~fibre product of families of {K3} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {269--276},
     year = {2014},
     volume = {205},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/}
}
TY  - JOUR
AU  - O. V. Nikol'skaya
TI  - On the geometry of a smooth model of a fibre product of families of K3 surfaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 269
EP  - 276
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/
LA  - en
ID  - SM_2014_205_2_a4
ER  - 
%0 Journal Article
%A O. V. Nikol'skaya
%T On the geometry of a smooth model of a fibre product of families of K3 surfaces
%J Sbornik. Mathematics
%D 2014
%P 269-276
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/
%G en
%F SM_2014_205_2_a4
O. V. Nikol'skaya. On the geometry of a smooth model of a fibre product of families of K3 surfaces. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a4/

[1] Yu. G. Zarhin, “Hodge groups of $K3$ surfaces”, J. Reine Angew. Math., 341 (1983), 193–220 | DOI | MR | Zbl

[2] W. V. D. Hodge, “The topological invariants of algebraic varieties”, Proceedings of the International congress of mathematicians (Cambridge, Mass., 1950), v. 1, Amer. Math. Soc., Providence, RI, 1952, 182–192 | MR | Zbl

[3] G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings, v. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | MR | Zbl

[4] S. G. Tankeev, “The arithmetic and geometry of a generic hypersurface section”, Izv. Math., 66:2 (2002), 393–424 | DOI | DOI | MR | Zbl

[5] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | DOI | MR | Zbl

[6] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | MR | Zbl | Zbl

[7] Yu. G. Zarhin, “Weights of simple Lie algebras in cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[8] O. V. Nikol'skaya, “On algebraic cycles on a fibre product of families of K3 surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl

[9] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44:1 (1974), 5–77 | DOI | MR | Zbl

[10] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl