@article{SM_2014_205_11_a4,
author = {F. K. Nilov},
title = {On new constructions in the {Blaschke-Bol} problem},
journal = {Sbornik. Mathematics},
pages = {1650--1667},
year = {2014},
volume = {205},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/}
}
F. K. Nilov. On new constructions in the Blaschke-Bol problem. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1650-1667. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/
[1] A. V. Akopyan, Geometry in figures, CreateSpace Independent Publishing Platform, 2011, 128 pp.
[2] A. Hraskó, “Poncelet-type problems, an elementary approach”, Elem. Math., 55:2 (2000), 45–62 | DOI | MR | Zbl
[3] D. Fuchs, S. Tabachnikov, Mathematical omnibus, Thirty lectures on classical mathematics, Amer. Math. Soc., Providence, RI, 2007, xvi+463 pp. | MR | Zbl
[4] H. Pottmann, Ling Shi, M. Skopenkov, “Darboux cyclides and webs from circles”, Comput. Aided Geom. Design, 29:1 (2012), 77–97 | DOI | MR | Zbl
[5] W. Blaschke, G. Bol, Geometrie der Gewebe. Topologische Fragen der Differentialgeometrie, Grundlehren Math. Wiss., 49, J. Springer, Berlin, 1938, viii+339 pp. | MR | Zbl
[6] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser Verlag, Basel und Stuttgart, 1955, 108 pp. | MR | MR | Zbl
[7] V. B. Lazareva, A. M. Shelekhov, “On triangulations of the plane by pencils of conics”, Sb. Math., 198:11 (2007), 1637–1663 | DOI | DOI | MR | Zbl
[8] W. Wunderlich, “Über ein besonderes Dreiecksnetz aus Kreisen”, Sitzungsber. Akad. Wiss. Wien, 147 (1938), 385–399 | Zbl
[9] V. B. Lazareva, A. M. Shelekhov, “On triangulations of the plane by pencils of conics. II”, Sb. Math., 204:6 (2013), 869–909 | DOI | DOI | MR | Zbl
[10] A. G. Khovanskii, “Rectification of circles”, Sib. Math. J., 21:6 (1981), 649–652 | DOI | MR | Zbl | Zbl
[11] K. Strubecker, “Über eine Klasse spezieller Dreiecksnetze aus Kreisen”, Monaths. Math. Phys., 39:1 (1932), 395–398 | DOI | MR | Zbl
[12] J. L. Coolidge, A treatise on the circle and the sphere, Clarendon Press, Oxford, 1916, 603 pp. | MR | Zbl
[13] A. V. Akopyan, A. A. Zaslavsky, Geometry of conics, Math. World, 26, Amer. Math. Soc., Providence, RI, 2007, viii+134 pp. | MR | Zbl