On new constructions in the Blaschke-Bol problem
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1650-1667 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find several essentially new constructions of hexagonal $3$-webs based on a combination of quadratic and linear families of circles. They are used to construct $5$ new types of hexagonal $3$-webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal $3$-webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.
Keywords: webs, webs of circles, hexagonal closure condition, pencil of circles, quadratic family of circles.
@article{SM_2014_205_11_a4,
     author = {F. K. Nilov},
     title = {On new constructions in the {Blaschke-Bol} problem},
     journal = {Sbornik. Mathematics},
     pages = {1650--1667},
     year = {2014},
     volume = {205},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/}
}
TY  - JOUR
AU  - F. K. Nilov
TI  - On new constructions in the Blaschke-Bol problem
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1650
EP  - 1667
VL  - 205
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/
LA  - en
ID  - SM_2014_205_11_a4
ER  - 
%0 Journal Article
%A F. K. Nilov
%T On new constructions in the Blaschke-Bol problem
%J Sbornik. Mathematics
%D 2014
%P 1650-1667
%V 205
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/
%G en
%F SM_2014_205_11_a4
F. K. Nilov. On new constructions in the Blaschke-Bol problem. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1650-1667. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/

[1] A. V. Akopyan, Geometry in figures, CreateSpace Independent Publishing Platform, 2011, 128 pp.

[2] A. Hraskó, “Poncelet-type problems, an elementary approach”, Elem. Math., 55:2 (2000), 45–62 | DOI | MR | Zbl

[3] D. Fuchs, S. Tabachnikov, Mathematical omnibus, Thirty lectures on classical mathematics, Amer. Math. Soc., Providence, RI, 2007, xvi+463 pp. | MR | Zbl

[4] H. Pottmann, Ling Shi, M. Skopenkov, “Darboux cyclides and webs from circles”, Comput. Aided Geom. Design, 29:1 (2012), 77–97 | DOI | MR | Zbl

[5] W. Blaschke, G. Bol, Geometrie der Gewebe. Topologische Fragen der Differentialgeometrie, Grundlehren Math. Wiss., 49, J. Springer, Berlin, 1938, viii+339 pp. | MR | Zbl

[6] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser Verlag, Basel und Stuttgart, 1955, 108 pp. | MR | MR | Zbl

[7] V. B. Lazareva, A. M. Shelekhov, “On triangulations of the plane by pencils of conics”, Sb. Math., 198:11 (2007), 1637–1663 | DOI | DOI | MR | Zbl

[8] W. Wunderlich, “Über ein besonderes Dreiecksnetz aus Kreisen”, Sitzungsber. Akad. Wiss. Wien, 147 (1938), 385–399 | Zbl

[9] V. B. Lazareva, A. M. Shelekhov, “On triangulations of the plane by pencils of conics. II”, Sb. Math., 204:6 (2013), 869–909 | DOI | DOI | MR | Zbl

[10] A. G. Khovanskii, “Rectification of circles”, Sib. Math. J., 21:6 (1981), 649–652 | DOI | MR | Zbl | Zbl

[11] K. Strubecker, “Über eine Klasse spezieller Dreiecksnetze aus Kreisen”, Monaths. Math. Phys., 39:1 (1932), 395–398 | DOI | MR | Zbl

[12] J. L. Coolidge, A treatise on the circle and the sphere, Clarendon Press, Oxford, 1916, 603 pp. | MR | Zbl

[13] A. V. Akopyan, A. A. Zaslavsky, Geometry of conics, Math. World, 26, Amer. Math. Soc., Providence, RI, 2007, viii+134 pp. | MR | Zbl