On new constructions in the Blaschke-Bol problem
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1650-1667

Voir la notice de l'article provenant de la source Math-Net.Ru

We find several essentially new constructions of hexagonal $3$-webs based on a combination of quadratic and linear families of circles. They are used to construct $5$ new types of hexagonal $3$-webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal $3$-webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.
Keywords: webs, webs of circles, hexagonal closure condition, pencil of circles, quadratic family of circles.
@article{SM_2014_205_11_a4,
     author = {F. K. Nilov},
     title = {On new constructions in the {Blaschke-Bol} problem},
     journal = {Sbornik. Mathematics},
     pages = {1650--1667},
     publisher = {mathdoc},
     volume = {205},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/}
}
TY  - JOUR
AU  - F. K. Nilov
TI  - On new constructions in the Blaschke-Bol problem
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1650
EP  - 1667
VL  - 205
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/
LA  - en
ID  - SM_2014_205_11_a4
ER  - 
%0 Journal Article
%A F. K. Nilov
%T On new constructions in the Blaschke-Bol problem
%J Sbornik. Mathematics
%D 2014
%P 1650-1667
%V 205
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/
%G en
%F SM_2014_205_11_a4
F. K. Nilov. On new constructions in the Blaschke-Bol problem. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1650-1667. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a4/