A~bound for the Schur index of irreducible representations of finite groups
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1152-1160

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an optimal bound for the Schur index of irreducible complex representations of finite groups over the field of rational numbers, when only the prime divisors of the order of the group are known. We study relationships with compatible and universally compatible extensions of number fields. We give a simpler proof of the well-known Berman-Yamada bound for the Schur index over the field $\mathbb{Q}_p$. Bibliography: 7 titles.
Keywords: finite group, Schur index, universally compatible extensions.
@article{SM_2013_204_8_a3,
     author = {D. D. Kiselev},
     title = {A~bound for the {Schur} index of irreducible representations of finite groups},
     journal = {Sbornik. Mathematics},
     pages = {1152--1160},
     publisher = {mathdoc},
     volume = {204},
     number = {8},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a3/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - A~bound for the Schur index of irreducible representations of finite groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1152
EP  - 1160
VL  - 204
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a3/
LA  - en
ID  - SM_2013_204_8_a3
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T A~bound for the Schur index of irreducible representations of finite groups
%J Sbornik. Mathematics
%D 2013
%P 1152-1160
%V 204
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a3/
%G en
%F SM_2013_204_8_a3
D. D. Kiselev. A~bound for the Schur index of irreducible representations of finite groups. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1152-1160. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a3/