A~bound for the Schur index of irreducible representations of finite groups
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1152-1160
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an optimal bound for the Schur index of irreducible complex representations of finite groups over the field of rational numbers, when only the prime divisors of the order of the group are known. We study relationships with compatible and universally compatible extensions of number fields. We give a simpler proof of the well-known Berman-Yamada bound for the Schur index over the field $\mathbb{Q}_p$.
Bibliography: 7 titles.
Keywords:
finite group, Schur index, universally compatible extensions.
@article{SM_2013_204_8_a3,
author = {D. D. Kiselev},
title = {A~bound for the {Schur} index of irreducible representations of finite groups},
journal = {Sbornik. Mathematics},
pages = {1152--1160},
publisher = {mathdoc},
volume = {204},
number = {8},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a3/}
}
D. D. Kiselev. A~bound for the Schur index of irreducible representations of finite groups. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1152-1160. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a3/