Vectors of a~given Diophantine type.~II
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 463-484
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove the existence of a family of vectors with continuum many elements $\mathbf v\in\mathbb{R}^s$ admitting infinitely many simultaneous $(\varphi(p)/p^{1/s})(1+B\cdot\varphi^{1+1/s}(p))$-approximations
and admitting no simultaneous $(\varphi(p)/p^{1/s})(1-B\cdot\varphi^{1+1/s}(p))$-approximation.
We prove that for $0$ the closed interval $[t,t(1+16B\cdot t^{1+1/s})]$ contains an element of the $s$-dimensional Lagrange spectrum. Here $A$, $B$ and $T$ stand for some positive constants depending on the dimension $s$ only and $\varphi$ is a positive nonincreasing function of positive integer argument such that $\varphi(1)\le A$.
Bibliography: 5 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
simultaneous Diophantine approximations, Lagrange spectrum, Euclidean space, simultaneous $\psi$-approximation.
                    
                    
                    
                  
                
                
                @article{SM_2013_204_4_a0,
     author = {R. K. Akhunzhanov},
     title = {Vectors of a~given {Diophantine} {type.~II}},
     journal = {Sbornik. Mathematics},
     pages = {463--484},
     publisher = {mathdoc},
     volume = {204},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a0/}
}
                      
                      
                    R. K. Akhunzhanov. Vectors of a~given Diophantine type.~II. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 463-484. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a0/
