@article{SM_2012_203_8_a6,
author = {F. N. Pakhomov},
title = {Undecidability of the elementary theory of the semilattice of {GLP-words}},
journal = {Sbornik. Mathematics},
pages = {1211--1229},
year = {2012},
volume = {203},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a6/}
}
F. N. Pakhomov. Undecidability of the elementary theory of the semilattice of GLP-words. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1211-1229. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a6/
[1] A. Tarski, “Arithmetical classes and types of Boolean algebras”, Bull. Amer. Math. Soc., 55 (1949), 63–64
[2] A. Grzegorezyk, “Undecidability of some topological theories”, Fund. Math., 38 (1951), 137–152 | MR | Zbl
[3] V. V. Rybakov, “Elementary theories of free topo-Boolean and pseudo-Boolean algebras”, Math. Notes, 37:6 (1985), 435–438 | DOI | MR | Zbl
[4] S. N. Artemov, L. D. Beklemishev, “On propositional quantifiers in provability logic”, Notre Dame J. Formal Logic, 34:3 (1993), 401–419 | DOI | MR | Zbl
[5] V. Yu. Shavrukov, “Undecidability in diagonalizable algebras”, J. Symbolic Logic, 62:1 (1997), 79–116 | DOI | MR | Zbl
[6] L. D. Beklemishev, “Reflection principles and provability algebras in formal arithmetic”, Russian Math. Surveys, 60:2 (2005), 197–268 | DOI | MR | Zbl
[7] L. D. Beklemishev, “Provability algebras and proof-theoretic ordinals. I”, Ann. Pure Appl. Logic, 128:1–3 (2004), 103–123 | DOI | MR | Zbl
[8] L. D. Beklemishev, A. Visser, “Problems in the logic of provability”, Mathematical problems from applied logic, v. I, Int. Math. Ser. (N. Y.), 4, Springer-Verlag, New York, 2006, 77–136 | DOI | MR | Zbl
[9] G. Lee, “A comparison of well-known ordinal notation systems for $\varepsilon_0$”, Ann. Pure Appl. Logic, 147:1–2 (2007), 48–70 | DOI | MR | Zbl
[10] G. K. Dzhaparidze, Modalno-logicheskie sredstva issledovaniya dokazuemosti, Diss. $\dots$ kand. filos. nauk, MGU, M., 1986
[11] K. N. Ignatiev, “On strong provability predicates and the associated modal logics”, J. Symbolic Logic, 58:1 (1993), 249–290 | DOI | MR | Zbl
[12] L. D. Beklemishev, “Veblen hierarchy in the context of provability algebras”, Logic, methodology and philosophy of science (Oviedo, Spain, 2003), Kings College Publ., London, 2005, 65–78 | Zbl
[13] L. D. Beklemishev, J. J. Joosten, M. Vervoort, “A finitary treatment of the closed fragment of Japaridze's provability logic”, J. Logic Comput., 15:4 (2005), 447–463 | DOI | MR | Zbl
[14] J. R. Büchi, “Weak second-order arithmetic and finite automata”, Z. Math. Logik Grundlagen Math., 6 (1960), 66–92 | DOI | MR | Zbl
[15] C. C. Elgot, M. O. Rabin, “Decidability and undecidability of extensions of second (first) order theory of (generalized) successor”, J. Symbolic Logic, 31:2 (1966), 169–181 | DOI | Zbl
[16] J. R. Büchi, “Decision methods in the theory of ordinals”, Bull. Amer. Math. Soc., 71:5 (1965), 767–770 | DOI | MR | Zbl