Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 864-892

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain topological vector spaces of functions on the light cone $X$ in $\mathbb R^3$ we obtain a complete description of all the closed linear subspaces which are invariant with respect to the natural quasiregular representation of the group $\mathbb R\oplus\operatorname{SO}_0(1,2)$. In particular, we give a description of irreducible and indecomposable invariant subspaces. Among the function spaces we consider we include, in particular, the spaces $C(X)$ and $\mathscr E(X)$ of continuous and infinitely differentiable functions on $X$ and also function spaces formed by functions with exponential growth on $X$. Bibliography: 32 titles.
Keywords: invariant subspaces, quasiregular representation, light cone, homogeneous spaces, harmonic analysis.
@article{SM_2012_203_6_a4,
     author = {S. S. Platonov},
     title = {Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$},
     journal = {Sbornik. Mathematics},
     pages = {864--892},
     publisher = {mathdoc},
     volume = {203},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a4/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 864
EP  - 892
VL  - 203
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a4/
LA  - en
ID  - SM_2012_203_6_a4
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$
%J Sbornik. Mathematics
%D 2012
%P 864-892
%V 203
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a4/
%G en
%F SM_2012_203_6_a4
S. S. Platonov. Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 864-892. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a4/