Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 864-892
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For certain topological vector spaces of functions on the light cone $X$ in $\mathbb R^3$ we obtain a complete description of all the closed linear subspaces which are invariant with respect to the natural quasiregular representation of the group $\mathbb R\oplus\operatorname{SO}_0(1,2)$. In particular, we give a description of irreducible and indecomposable invariant subspaces. Among the function spaces we consider we include, in particular, the spaces $C(X)$ and $\mathscr E(X)$ of continuous and infinitely differentiable functions on $X$ and also function spaces formed by functions with exponential growth on $X$.
Bibliography: 32 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
invariant subspaces, quasiregular representation, light cone, homogeneous spaces, harmonic analysis.
                    
                    
                    
                  
                
                
                @article{SM_2012_203_6_a4,
     author = {S. S. Platonov},
     title = {Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$},
     journal = {Sbornik. Mathematics},
     pages = {864--892},
     publisher = {mathdoc},
     volume = {203},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a4/}
}
                      
                      
                    S. S. Platonov. Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 864-892. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a4/
