The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function
Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 1-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Dirichlet problem in which the boundary value of a solution is understood as the $L_p$-limit, $p>1$, of traces of this solution on surfaces ‘parallel’ to the boundary. We suggest a setting of this problem which (in contrast to the notion of solution in $W_{p,\operatorname{loc}}^1$) enables us to study the solvability of the problem without making smoothness assumptions on the coefficients inside the domain. In particular, for an equation in selfadjoint form without lower-order terms, under the same conditions as those used for $p=2$, we prove unique solvability and establish a bound for an analogue of the area integral. Bibliography: 37 titles.
Keywords: Dirichlet problem, boundary value.
Mots-clés : elliptic equation
@article{SM_2012_203_1_a0,
     author = {A. K. Gushchin},
     title = {The {Dirichlet} problem for a~second-order elliptic equation with an $L_p$ boundary function},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {203},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a0/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1
EP  - 27
VL  - 203
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_1_a0/
LA  - en
ID  - SM_2012_203_1_a0
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function
%J Sbornik. Mathematics
%D 2012
%P 1-27
%V 203
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_1_a0/
%G en
%F SM_2012_203_1_a0
A. K. Gushchin. The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a0/