Mots-clés : elliptic equation
@article{SM_2012_203_1_a0,
author = {A. K. Gushchin},
title = {The {Dirichlet} problem for a~second-order elliptic equation with an $L_p$ boundary function},
journal = {Sbornik. Mathematics},
pages = {1--27},
year = {2012},
volume = {203},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a0/}
}
A. K. Gushchin. The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a0/
[1] V. P. Mihaǐlov, “Dirichlet's problem for a second-order elliptic equation”, Differential Equations, 12:10 (1977), 1320–1329 | MR | Zbl
[2] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl
[3] A. K. Gushchin, “On the Dirichlet problem for a second order elliptic equation”, Soviet Math. Dokl., 38:2 (1989), 372–376 | MR | Zbl
[4] A. K. Gushchin, V. P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 101–136 | DOI | MR | Zbl
[5] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl
[6] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Dokl. Math., 72:2 (2005), 665–668 | MR | Zbl
[7] A. K. Gushchin, “Interior estimates for the weak solution to the Dirichlet problem for a second-order elliptic equation”, Dokl. Math., 57:1 (1998), 121–123 | MR | Zbl
[8] A. K. Gushchin, “Some properties of the solutions of the Dirichlet problem for a second-order elliptic equation”, Sb. Math., 189:7 (1998), 1009–1045 | DOI | MR | Zbl
[9] A. K. Gushchin, “Carleson-type estimates for solutions to second-order elliptic equations”, Dokl. Math., 69:3 (2004), 329–331 | MR | Zbl
[10] A. K. Gushchin, “Smoothness of solutions to the Dirichlet problem for a second-order elliptic equation with a square integrable boundary function”, Dokl. Math., 76:1 (2007), 486–489 | DOI | MR | Zbl
[11] A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theoret. and Math. Phys., 157:3 (2008), 1655–1670 | DOI | MR | Zbl
[12] A. K. Guschin, V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike, Tr. mezhdunar. konferentsii, VTs AN SSSR, M., 1981, 189–205
[13] O. I. Bogoyavlenskij, V. S. Vladimirov, I. V. Volovich, A. K. Gushchin, Yu. N. Drozhzhinov, V. V. Zharinov, V. P. Mikhajlov, “Boundary value problems of mathematical physics”, Proc. Steklov Inst. Math., 175 (1988), 65–105 | MR | Zbl | Zbl
[14] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl
[15] L. Carleson, “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76 (1962), 547–559 | DOI | MR | Zbl
[16] L. Hörmander, “$L^p$ estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl
[17] A. K. Guschin, V. P. Mikhailov, “Vnutrennie otsenki obobschennykh reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Samarskogo gos. un-ta, 2008, no. 8/1(67), 76–94
[18] A. K. Gushchin, V. P. Mikhailov, “A condition that a class of nonlocal problems for a second-order elliptic equation be Fredholm”, Russian Acad. Sci. Dokl. Math., 48:3 (1994), 510–514 | MR | Zbl
[19] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl
[20] A. K. Gushchin, V. P. Mikhailov, “On the univalent solvability of nonlocal problems for an elliptic equation”, Dokl. Math., 54:3 (1996), 815–816 | MR | Zbl
[21] A. K. Gushchin, “A condition for the complete continuity of operators arising in nonlocal problems for elliptic equations”, Dokl. Math., 62:1 (2000), 32–34 | MR | Zbl
[22] A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–668 | DOI | MR | Zbl
[23] Yu. A. Alukhutov, V. A. Kondrat'ev, “Solvability of the Dirichlet problem for second-order elliptic equations in a convex region”, Differential Equations, 28:5 (1992), 650–662 | MR | Zbl
[24] A. K. Gushchin, V. P. Mihailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl
[25] I. M. Petrushko, “On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl
[26] Yu. A. Mikhajlov, “Boundary values in $L_p$, $p>1$, of solutions of second-order linear elliptic equations”, Differential Equations, 19:2 (1983), 243–258 | MR | Zbl
[27] E. De Giorgi, “Sulla differenziabilitá e l'analiticitá delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43 | MR | Zbl
[28] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl
[29] J. Moser, “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl
[30] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl
[31] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[32] V. P. Mikhailov, A. K. Guschin, Dopolnitelnye glavy kursa “Uravneniya matematicheskoi fiziki”, Lekts. kursy NOTs, 7, MIAN, M., 2007
[33] V. G. Maz'ja, “On a degenerating problem with directional derivative”, Math. USSR-Sb., 16:3 (1972), 429–469 | DOI | MR | Zbl
[34] A. K. Gushchin, V. P. Mihailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl
[35] A. P. Morse, “A theory of covering and differentiation”, Trans. Amer. Math. Soc., 55 (1944), 205–235 | DOI | MR | Zbl
[36] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl
[37] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI