Mots-clés : Moishezon space.
@article{SM_2011_202_8_a3,
author = {I. V. Netai},
title = {Parabolically connected subgroups},
journal = {Sbornik. Mathematics},
pages = {1169--1182},
year = {2011},
volume = {202},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/}
}
I. V. Netai. Parabolically connected subgroups. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/
[1] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl
[2] J. Hausen, “Algebraicity criteria for almost homogeneous complex spaces”, Arch. Math. (Basel), 74:4 (2000), 317–320 | DOI | MR | Zbl
[3] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl
[4] H. Grauert, R. Remmert, “Über kompakte homogene komplexe Mannigfaltigkeiten”, Arch. Math. (Basel), 13:1 (1962), 498–507 | DOI | MR | Zbl
[5] D. Luna, “Toute variété de Moisezon presque homogène sous un tore est un schéma”, C. R. Acad. Sci. Paris Sér. I Math., 314:1 (1992), 65–67 | MR | Zbl
[6] D. Luna, L. Moser-Jauslin, Th. Vust, “Almost homogeneous Artin–Moišezon varieties under the action of $\mathrm{PSL}_2(\mathbb{C})$”, Topological methods in algebraic transformation groups (New Brunswick, NJ, USA, 1988), Progr. Math., 80, Birkhäuser, Boston, MA, 1989, 107–115 | MR | Zbl