Parabolically connected subgroups
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All reductive spherical subgroups of the group $\operatorname{SL}(n)$ are found for which the intersections with every parabolic subgroup of $\operatorname{SL}(n)$ are connected. This condition guarantees that open equivariant embeddings of the corresponding homogeneous spaces into Moishezon spaces are algebraic. Bibliography: 6 titles.
Keywords: reductive group, parabolic subgroup, spherical subgroup, flag
Mots-clés : Moishezon space.
@article{SM_2011_202_8_a3,
     author = {I. V. Netai},
     title = {Parabolically connected subgroups},
     journal = {Sbornik. Mathematics},
     pages = {1169--1182},
     year = {2011},
     volume = {202},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/}
}
TY  - JOUR
AU  - I. V. Netai
TI  - Parabolically connected subgroups
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1169
EP  - 1182
VL  - 202
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/
LA  - en
ID  - SM_2011_202_8_a3
ER  - 
%0 Journal Article
%A I. V. Netai
%T Parabolically connected subgroups
%J Sbornik. Mathematics
%D 2011
%P 1169-1182
%V 202
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/
%G en
%F SM_2011_202_8_a3
I. V. Netai. Parabolically connected subgroups. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/

[1] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[2] J. Hausen, “Algebraicity criteria for almost homogeneous complex spaces”, Arch. Math. (Basel), 74:4 (2000), 317–320 | DOI | MR | Zbl

[3] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl

[4] H. Grauert, R. Remmert, “Über kompakte homogene komplexe Mannigfaltigkeiten”, Arch. Math. (Basel), 13:1 (1962), 498–507 | DOI | MR | Zbl

[5] D. Luna, “Toute variété de Moisezon presque homogène sous un tore est un schéma”, C. R. Acad. Sci. Paris Sér. I Math., 314:1 (1992), 65–67 | MR | Zbl

[6] D. Luna, L. Moser-Jauslin, Th. Vust, “Almost homogeneous Artin–Moišezon varieties under the action of $\mathrm{PSL}_2(\mathbb{C})$”, Topological methods in algebraic transformation groups (New Brunswick, NJ, USA, 1988), Progr. Math., 80, Birkhäuser, Boston, MA, 1989, 107–115 | MR | Zbl