Parabolically connected subgroups
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182

Voir la notice de l'article provenant de la source Math-Net.Ru

All reductive spherical subgroups of the group $\operatorname{SL}(n)$ are found for which the intersections with every parabolic subgroup of $\operatorname{SL}(n)$ are connected. This condition guarantees that open equivariant embeddings of the corresponding homogeneous spaces into Moishezon spaces are algebraic. Bibliography: 6 titles.
Keywords: reductive group, parabolic subgroup, spherical subgroup, flag
Mots-clés : Moishezon space.
@article{SM_2011_202_8_a3,
     author = {I. V. Netai},
     title = {Parabolically connected subgroups},
     journal = {Sbornik. Mathematics},
     pages = {1169--1182},
     publisher = {mathdoc},
     volume = {202},
     number = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/}
}
TY  - JOUR
AU  - I. V. Netai
TI  - Parabolically connected subgroups
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1169
EP  - 1182
VL  - 202
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/
LA  - en
ID  - SM_2011_202_8_a3
ER  - 
%0 Journal Article
%A I. V. Netai
%T Parabolically connected subgroups
%J Sbornik. Mathematics
%D 2011
%P 1169-1182
%V 202
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/
%G en
%F SM_2011_202_8_a3
I. V. Netai. Parabolically connected subgroups. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/