Parabolically connected subgroups
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182
Voir la notice de l'article provenant de la source Math-Net.Ru
All reductive spherical subgroups of the group $\operatorname{SL}(n)$ are found for which the intersections with every parabolic subgroup of $\operatorname{SL}(n)$ are connected. This condition guarantees that open equivariant embeddings of the corresponding homogeneous spaces into Moishezon spaces are algebraic.
Bibliography: 6 titles.
Keywords:
reductive group, parabolic subgroup, spherical subgroup, flag
Mots-clés : Moishezon space.
Mots-clés : Moishezon space.
@article{SM_2011_202_8_a3,
author = {I. V. Netai},
title = {Parabolically connected subgroups},
journal = {Sbornik. Mathematics},
pages = {1169--1182},
publisher = {mathdoc},
volume = {202},
number = {8},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/}
}
I. V. Netai. Parabolically connected subgroups. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1169-1182. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a3/