On the colouring of spheres embedded in~$\mathbb R^n$
Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 859-886

Voir la notice de l'article provenant de la source Math-Net.Ru

The work concerns the well-known problem of identifying the chromatic number $\chi(\mathbb R^n)$ of the space $\mathbb R^n$, that is, finding the minimal number of colours required to colour all points of the space in such a way that any two points at distance one from each other have different colours. A new quantity generalising the chromatic number is introduced in the paper, namely, the speckledness of a subset in a fixed metric space. A series of lower bounds for the speckledness of spheres is derived. These bounds are used to obtain general results lifting lower bounds for the chromatic number of a space to higher dimensions, generalising the well-known ‘Moser-Raisky spindle’. As a corollary of these results, the best known lower bound for the chromatic number $\chi(\mathbb R^{12})\geqslant 27$ is obtained, and furthermore, the known bound $\chi(\mathbb R^4)\geqslant 7$ is reproved in several different ways. Bibliography: 23 titles.
Keywords: chromatic number, distance graph, speckledness of a set.
@article{SM_2011_202_6_a3,
     author = {A. B. Kupavskii},
     title = {On the colouring of spheres embedded in~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {859--886},
     publisher = {mathdoc},
     volume = {202},
     number = {6},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/}
}
TY  - JOUR
AU  - A. B. Kupavskii
TI  - On the colouring of spheres embedded in~$\mathbb R^n$
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 859
EP  - 886
VL  - 202
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/
LA  - en
ID  - SM_2011_202_6_a3
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%T On the colouring of spheres embedded in~$\mathbb R^n$
%J Sbornik. Mathematics
%D 2011
%P 859-886
%V 202
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/
%G en
%F SM_2011_202_6_a3
A. B. Kupavskii. On the colouring of spheres embedded in~$\mathbb R^n$. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 859-886. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/