@article{SM_2011_202_6_a3,
author = {A. B. Kupavskii},
title = {On the colouring of spheres embedded in~$\mathbb R^n$},
journal = {Sbornik. Mathematics},
pages = {859--886},
year = {2011},
volume = {202},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/}
}
A. B. Kupavskii. On the colouring of spheres embedded in $\mathbb R^n$. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 859-886. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/
[1] A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | DOI | MR | Zbl
[2] A. M. Raigorodskii, Khromaticheskie chisla, MTsNMO, M., 2003
[3] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007
[4] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, 2004, no. 8, 186–221
[5] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics (Budapest, 1999), v. II, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2001, 649–666 | MR | Zbl
[6] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer-Verlag, New York, 2005 | MR | Zbl
[7] J. Cibulka, “On the chromatic number of real and rational spaces”, Geombinatorics, 18:2 (2008), 53–65 | MR | Zbl
[8] D. R. Woodall, “Distances realized by sets covering the plane”, J. Combinatorial Theory Ser. A, 14:2 (1973), 187–200 | DOI | MR | Zbl
[9] P. D. Johnson, “Coloring Abelian groups”, Discrete Math., 40:2–3 (1982), 219–223 | DOI | MR | Zbl
[10] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl
[11] G. J. Simmons, “On a problem of Erdős concerning a 3-coloring of the unit sphere”, Discrete Math., 8:1 (1974), 81–84 | DOI | MR | Zbl
[12] G. J. Simmons, “The chromatic number of the sphere”, J. Austral. Math. Soc. Ser. A, 21:4 (1976), 473–480 | DOI | MR | Zbl
[13] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19:1 (1972), 1–24 | DOI | MR | Zbl
[14] A. M. Raigorodskii, “The chromatic number of a space with the metric $l_q$”, Russian Math. Surveys, 59:5 (2004), 973–975 | DOI | MR | Zbl
[15] E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801 | DOI | MR | Zbl
[16] O. Nechushtan, “On the space chromatic number”, Discrete Math., 256:1–2 (2002), 499–507 | DOI | MR | Zbl
[17] R. Radoičić, G. Tóth, “Note on the chromatic number of the space”, Discrete and computational geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 696–698 | MR | Zbl
[18] K. Cantwell, “Finite Euclidean Ramsey theory”, J. Combin. Theory Ser. A, 73:2 (1996), 273–285 | MR | Zbl
[19] A. B. Kupavskii, A. M. Raigorodskii, “On the chromatic number of $\mathbb{R}^9$”, J. Math. Sci., 163:6 (2009), 720–731 | DOI | MR
[20] A. B. Kupavskii, “Lifting of a bound for the chromatic number of $\mathbb{R}^n$ to higher dimensions”, Dokl. Math., 80:3 (2009), 833–836 | DOI | MR | Zbl
[21] L. Moser, W. Moser, “Solution to problem 10”, Canad. Math. Bull., 4 (1961), 187–189
[22] L. L. Ivanov, “An estimate for the chromatic number of the space $\mathbb R^4$”, Russian Math. Survey, 61:5 (2006), 984–986 | DOI | MR | Zbl
[23] L. Lovász, “Self-dual polytopes and the chromatic number of distance graphs on the sphere”, Acta Sci. Math. (Szeged), 45:1 (1983), 317–323 | MR | Zbl