On the colouring of spheres embedded in $\mathbb R^n$
Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 859-886 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work concerns the well-known problem of identifying the chromatic number $\chi(\mathbb R^n)$ of the space $\mathbb R^n$, that is, finding the minimal number of colours required to colour all points of the space in such a way that any two points at distance one from each other have different colours. A new quantity generalising the chromatic number is introduced in the paper, namely, the speckledness of a subset in a fixed metric space. A series of lower bounds for the speckledness of spheres is derived. These bounds are used to obtain general results lifting lower bounds for the chromatic number of a space to higher dimensions, generalising the well-known ‘Moser-Raisky spindle’. As a corollary of these results, the best known lower bound for the chromatic number $\chi(\mathbb R^{12})\geqslant 27$ is obtained, and furthermore, the known bound $\chi(\mathbb R^4)\geqslant 7$ is reproved in several different ways. Bibliography: 23 titles.
Keywords: chromatic number, distance graph, speckledness of a set.
@article{SM_2011_202_6_a3,
     author = {A. B. Kupavskii},
     title = {On the colouring of spheres embedded in~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {859--886},
     year = {2011},
     volume = {202},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/}
}
TY  - JOUR
AU  - A. B. Kupavskii
TI  - On the colouring of spheres embedded in $\mathbb R^n$
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 859
EP  - 886
VL  - 202
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/
LA  - en
ID  - SM_2011_202_6_a3
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%T On the colouring of spheres embedded in $\mathbb R^n$
%J Sbornik. Mathematics
%D 2011
%P 859-886
%V 202
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/
%G en
%F SM_2011_202_6_a3
A. B. Kupavskii. On the colouring of spheres embedded in $\mathbb R^n$. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 859-886. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a3/

[1] A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | DOI | MR | Zbl

[2] A. M. Raigorodskii, Khromaticheskie chisla, MTsNMO, M., 2003

[3] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[4] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, 2004, no. 8, 186–221

[5] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics (Budapest, 1999), v. II, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2001, 649–666 | MR | Zbl

[6] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer-Verlag, New York, 2005 | MR | Zbl

[7] J. Cibulka, “On the chromatic number of real and rational spaces”, Geombinatorics, 18:2 (2008), 53–65 | MR | Zbl

[8] D. R. Woodall, “Distances realized by sets covering the plane”, J. Combinatorial Theory Ser. A, 14:2 (1973), 187–200 | DOI | MR | Zbl

[9] P. D. Johnson, “Coloring Abelian groups”, Discrete Math., 40:2–3 (1982), 219–223 | DOI | MR | Zbl

[10] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl

[11] G. J. Simmons, “On a problem of Erdős concerning a 3-coloring of the unit sphere”, Discrete Math., 8:1 (1974), 81–84 | DOI | MR | Zbl

[12] G. J. Simmons, “The chromatic number of the sphere”, J. Austral. Math. Soc. Ser. A, 21:4 (1976), 473–480 | DOI | MR | Zbl

[13] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19:1 (1972), 1–24 | DOI | MR | Zbl

[14] A. M. Raigorodskii, “The chromatic number of a space with the metric $l_q$”, Russian Math. Surveys, 59:5 (2004), 973–975 | DOI | MR | Zbl

[15] E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801 | DOI | MR | Zbl

[16] O. Nechushtan, “On the space chromatic number”, Discrete Math., 256:1–2 (2002), 499–507 | DOI | MR | Zbl

[17] R. Radoičić, G. Tóth, “Note on the chromatic number of the space”, Discrete and computational geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 696–698 | MR | Zbl

[18] K. Cantwell, “Finite Euclidean Ramsey theory”, J. Combin. Theory Ser. A, 73:2 (1996), 273–285 | MR | Zbl

[19] A. B. Kupavskii, A. M. Raigorodskii, “On the chromatic number of $\mathbb{R}^9$”, J. Math. Sci., 163:6 (2009), 720–731 | DOI | MR

[20] A. B. Kupavskii, “Lifting of a bound for the chromatic number of $\mathbb{R}^n$ to higher dimensions”, Dokl. Math., 80:3 (2009), 833–836 | DOI | MR | Zbl

[21] L. Moser, W. Moser, “Solution to problem 10”, Canad. Math. Bull., 4 (1961), 187–189

[22] L. L. Ivanov, “An estimate for the chromatic number of the space $\mathbb R^4$”, Russian Math. Survey, 61:5 (2006), 984–986 | DOI | MR | Zbl

[23] L. Lovász, “Self-dual polytopes and the chromatic number of distance graphs on the sphere”, Acta Sci. Math. (Szeged), 45:1 (1983), 317–323 | MR | Zbl