Differential equations where the derivative is taken with respect to a measure
Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 243-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper looks at ordinary differential equations (DE) containing the derivative of the unknown functions with respect to a measure $\mu$ which is continuous with respect to the Lebesgue measure. It is shown that the Cauchy problem for a linear normal system of DE with a $\mu$-derivative is uniquely solvable. A necessary and sufficient condition is obtained for the solvability of an equation of Riccati type with a $\mu$-derivative. It is related to a boundary-value problem for a linear system of DE. Using this condition a necessary and sufficient condition is obtained for a Volterra factorization to exist for linear operators that differ from the identity by an integral operator that is completely continuous in the space $L_p(\mu)$, $1\le p<+\infty$. Bibliography: 12 titles.
Keywords: linear differential equations with derivative with respect to a measure, factorization.
Mots-clés : Riccati equation
@article{SM_2011_202_2_a2,
     author = {N. B. Engibaryan},
     title = {Differential equations where the derivative is taken with respect to a~measure},
     journal = {Sbornik. Mathematics},
     pages = {243--256},
     year = {2011},
     volume = {202},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a2/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Differential equations where the derivative is taken with respect to a measure
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 243
EP  - 256
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_2_a2/
LA  - en
ID  - SM_2011_202_2_a2
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Differential equations where the derivative is taken with respect to a measure
%J Sbornik. Mathematics
%D 2011
%P 243-256
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2011_202_2_a2/
%G en
%F SM_2011_202_2_a2
N. B. Engibaryan. Differential equations where the derivative is taken with respect to a measure. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 243-256. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a2/

[1] W. T. Reid, Riccati differential equations, Academic Press, New York–London, 1972 | MR | Zbl

[2] V. S. Vladimirov, “Priblizhennoe reshenie odnoi kraevoi zadachi”, Prikl. matem. i mekh., 19 (1958), 315–324

[3] R. Bellman, G. M. Wing, An introduction to invariant imbedding, Wiley, New York–London–Sydney, 1975 | MR | Zbl

[4] H. H. Kagiwada, R. E. Kalaba, A. Schumitzky, “An initial-value method for Fredholm integral equations”, J. Math. Anal. Appl., 19:1 (1967), 197–203 | DOI | MR | Zbl

[5] J. Casti, R. Kalaba, Imbedding methods in applied mathematics, Addison-Wesley, Reading, MA, 1973 | MR | MR | Zbl

[6] N. B. Engibaryan, M. G. Muradyan, “Linear differential equations and Riccati equations”, Soviet Math. Dokl., 18:4 (1977), 917–920 | MR | Zbl

[7] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[8] N. B. Engibaryan, “On the factorization of integral operators on spaces of summable functions”, Izv. Math., 73:5 (2009), 921–937 | DOI | MR | Zbl

[9] I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970 | MR | MR | Zbl

[10] N. B. Engibaryan, “Setting and solving several factorization problems for integral operators”, Sb. Math., 191:12 (2000), 1809–1825 | DOI | MR | Zbl

[11] W. Feller, An introduction to probability theory and its applications, v. 2, Wiley, New York, 1971 | MR | MR | Zbl | Zbl

[12] N. B. Engibaryan, “Collective Markov processes with sources”, J. Contemp. Math. Anal., 41:5 (2007), 69–79 | MR