Mots-clés : Riccati equation
@article{SM_2011_202_2_a2,
author = {N. B. Engibaryan},
title = {Differential equations where the derivative is taken with respect to a~measure},
journal = {Sbornik. Mathematics},
pages = {243--256},
year = {2011},
volume = {202},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a2/}
}
N. B. Engibaryan. Differential equations where the derivative is taken with respect to a measure. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 243-256. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a2/
[1] W. T. Reid, Riccati differential equations, Academic Press, New York–London, 1972 | MR | Zbl
[2] V. S. Vladimirov, “Priblizhennoe reshenie odnoi kraevoi zadachi”, Prikl. matem. i mekh., 19 (1958), 315–324
[3] R. Bellman, G. M. Wing, An introduction to invariant imbedding, Wiley, New York–London–Sydney, 1975 | MR | Zbl
[4] H. H. Kagiwada, R. E. Kalaba, A. Schumitzky, “An initial-value method for Fredholm integral equations”, J. Math. Anal. Appl., 19:1 (1967), 197–203 | DOI | MR | Zbl
[5] J. Casti, R. Kalaba, Imbedding methods in applied mathematics, Addison-Wesley, Reading, MA, 1973 | MR | MR | Zbl
[6] N. B. Engibaryan, M. G. Muradyan, “Linear differential equations and Riccati equations”, Soviet Math. Dokl., 18:4 (1977), 917–920 | MR | Zbl
[7] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl
[8] N. B. Engibaryan, “On the factorization of integral operators on spaces of summable functions”, Izv. Math., 73:5 (2009), 921–937 | DOI | MR | Zbl
[9] I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970 | MR | MR | Zbl
[10] N. B. Engibaryan, “Setting and solving several factorization problems for integral operators”, Sb. Math., 191:12 (2000), 1809–1825 | DOI | MR | Zbl
[11] W. Feller, An introduction to probability theory and its applications, v. 2, Wiley, New York, 1971 | MR | MR | Zbl | Zbl
[12] N. B. Engibaryan, “Collective Markov processes with sources”, J. Contemp. Math. Anal., 41:5 (2007), 69–79 | MR