@article{SM_2010_201_4_a3,
author = {S. A. Nazarov},
title = {An example of multiple gaps in the spectrum of a~periodic waveguide},
journal = {Sbornik. Mathematics},
pages = {569--594},
year = {2010},
volume = {201},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a3/}
}
S. A. Nazarov. An example of multiple gaps in the spectrum of a periodic waveguide. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 569-594. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a3/
[1] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[2] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR
[3] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (New York), 92:6 (1998), 4338–4353 | MR | Zbl
[4] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl
[5] A. Alonso, B. Simon, “The Birman–Krein–Vishik theory of self-adjoint extensions of semibounded operators”, J. Operator Theory, 4:2 (1980), 251–270 | MR | Zbl
[6] M. S. Birman, M. Z. Solomyak, Spectral-theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl
[7] S. A. Nazarov, “The essential spectrum of boundary value problems for systems of differential equations in a bounded domain with a cusp”, Funct. Anal. Appl., 43:1 (2009), 44–54 | DOI | MR
[8] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl
[9] S. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), 9, Springer-Verlag, New York, 2009, 261–309 | DOI | MR | Zbl
[10] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120 | MR | Zbl
[11] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993 | MR | Zbl
[12] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[13] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–San Francisco–London, 1978 | MR | MR | Zbl | Zbl
[14] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl | Zbl
[15] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[16] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[17] A. Figotin, P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media”, I. Scalar model, SIAM J. Appl. Math., 56:1 (1996), 68–88 | DOI | MR | Zbl
[18] E. L. Green, “Spectral theory of Laplace–Beltrami operators with periodic metrics”, J. Differential Equations, 133:1 (1997), 15–29 | DOI | MR | Zbl
[19] R. Hempel, K. Lienau, “Spectral properties of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 25:7–8 (2000), 1445–1470 | DOI | MR | Zbl
[20] L. Friedlander, “On the density of states of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 27:1–2 (2002), 355–380 | DOI | MR | Zbl
[21] V. V. Zhikov, “On spectrum gaps of some divergent elliptic operators with periodic coefficients”, St. Petersburg Math. J., 16 (2005), 773–790 | DOI | MR | Zbl
[22] N. Filonov, “Gaps in the spectrum of the Maxwell operator with periodic coefficients”, Comm. Math. Phys., 240:1–2 (2003), 161–170 | DOI | MR | Zbl
[23] P. Kuchment, “The mathematics of photonic crystals”, Mathematical modeling in optical science (Stanford Univ., Palo Alto, CA, USA, 1997), Frontiers Appl. Math., 22, SIAM, Philadelphia, PA, 2001, 207–272 | MR | Zbl
[24] L. Friedlander, M. Solomyak, “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl
[25] S. A. Nazarov, “Otkrytie lakuny v nepreryvnom spektre periodicheski vozmuschennogo volnovoda”, Matem. zametki, 87:5 (2010), 773–795
[26] S. A. Nazarov, “A gap in the continuous spectrum of an elastic waveguide”, C. R. Mecanique., 336:10 (2008), 751–756 | DOI | Zbl
[27] S. A. Nazarov, “Rayleigh waves in an elastic half-layer with partly jammed periodic boundary”, Dokl. Math., 53:11 (2008), 600–604 | DOI | MR | Zbl
[28] S. A. Nazarov, “Gap opening in the essential spectrum of the elasticity theory problem in a periodic half-layer”, St. Petersburg Math. J., 21 (2010), 281–307 | DOI | MR
[29] S. A. Nazarov, “Gap detection in the spectrum of an elastic periodic waveguide with a free surface”, Comput. Math. Math. Phys., 49:2 (2009), 323–333 | DOI | MR | Zbl
[30] S. A. Nazarov, “Gap in the essential spectrum of the Neumann problem for an elliptic system in a periodic domain”, Funct. Anal. Appl., 43:3 (2009), 239–241 | DOI | MR
[31] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991 | MR | Zbl
[32] S. A. Nazarov, “Asimptotika po malomu parametru resheniya ellipticheskoi po Agranovichu–Vishiku kraevoi zadachi v oblasti s konicheskoi tochkoi”, Problemy mat. analiza, 7 (1979), 146–167 | MR | Zbl
[33] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl
[34] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | MR | Zbl
[35] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[36] V. G. Maz'ya, S. A. Nazarov, B. A. Plamenevskiǐ, “On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone”, Math. USSR-Sb., 50:2 (1985), 415–437 | DOI | MR | Zbl | Zbl
[37] V. G. Maz'ya, S. A. Nazarov, B. A. Plamenevskiǐ, “Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes”, Math. USSR-Izv., 24:2 (1985), 321–345 | DOI | MR | Zbl
[38] I. V. Kamotskii, S. A. Nazarov, “Spectral problems in singularly pertubed domains and selfadjoint extensions of differential operators”, Proceedings of the St. Petersburg Mathematical Society. Vol. VI, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI, 2000, 127–181 | MR | MR | Zbl
[39] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[40] S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillations of a piezoelectric plate”, J. Math. Sci. (N. Y.), 114:5 (2003), 1657–1725 | DOI | MR | Zbl
[41] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70:3 (2005), 419–458 | DOI | MR | Zbl
[42] D. Gómez, M. Lobo, S. A. Nazarov, E. Pérez, “Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues”, J. Math. Pures Appl. (9), 85:4 (2006), 598–632 | DOI | MR | Zbl
[43] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy mat. analiza, 8 (1981), 72–153 | MR | Zbl