Mots-clés : algebra of diagonal matrices.
@article{SM_2009_200_12_a1,
author = {O. V. Markova},
title = {Upper bound for the length of commutative algebras},
journal = {Sbornik. Mathematics},
pages = {1767--1787},
year = {2009},
volume = {200},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a1/}
}
O. V. Markova. Upper bound for the length of commutative algebras. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1767-1787. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a1/
[1] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15:2 (1984), 161–170 | DOI | MR | Zbl
[2] A. J. M. Spencer, R. S. Rivlin, “The theory of matrix polynomials and its application to the mechanics of isotropic continua”, Arch. Rational Mech. Anal., 2:1 (1958), 309–336 | DOI | MR | Zbl
[3] A. J. M. Spencer, R. S. Rivlin, “Further results in the theory of matrix polynomials”, Arch. Rational Mech. Anal., 4:1 (1959), 214–230 | DOI | MR | Zbl
[4] Ch. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197:2 (1997), 535–545 | DOI | MR | Zbl
[5] D. Constantine, M. Darnall, “Lengths of finite dimensional representations of PBW algebras”, Linear Algebra Appl., 395 (2005), 175–181 | DOI | MR | Zbl
[6] O. V. Markova, “On the length of the algebra of upper-triangular matrices”, Russian Math. Surveys, 60:5 (2005), 984–985 | DOI | MR | Zbl
[7] W. C. Brown, F. W. Call, “Maximal commutative subalgebras of $n\times n$ matrices”, Comm. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl
[8] O. V. Markova, “Length computation of matrix subalgebras of special type”, J. Math. Sci. (N. Y.), 155:6 (2008), 908–931 | DOI | MR | Zbl