Maximally symmetric cell decompositions of surfaces
Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1263-1353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Regular (maximally symmetric) cell decompositions of closed oriented 2-dimensional surfaces (that is, regular maps or regular abstract polyhedra) are considered. These objects are also known as maximally symmetric oriented atoms. An atom is reducible if it is a branched covering of another atom, with branching points at vertices of the decomposition and/or the centres of faces. The following two problems have arisen in the theory of integrable Hamiltonian systems: describe the irreducible maximally symmetric atoms; describe all the maximally symmetric atoms covering a fixed irreducible maximally symmetric atom. In this paper, these problems are solved in important cases. As applications, the following maximally symmetric atoms are listed: the atoms containing at most 30 edges; the atoms containing at most six faces; the atoms containing $p$ or $2p$ edges, where $p$ is a prime. Bibliography: 52 titles.
@article{SM_2008_199_9_a0,
     author = {E. A. Kudryavtseva and I. M. Nikonov and A. T. Fomenko},
     title = {Maximally symmetric cell decompositions of surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1263--1353},
     year = {2008},
     volume = {199},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - I. M. Nikonov
AU  - A. T. Fomenko
TI  - Maximally symmetric cell decompositions of surfaces
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1263
EP  - 1353
VL  - 199
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/
LA  - en
ID  - SM_2008_199_9_a0
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A I. M. Nikonov
%A A. T. Fomenko
%T Maximally symmetric cell decompositions of surfaces
%J Sbornik. Mathematics
%D 2008
%P 1263-1353
%V 199
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/
%G en
%F SM_2008_199_9_a0
E. A. Kudryavtseva; I. M. Nikonov; A. T. Fomenko. Maximally symmetric cell decompositions of surfaces. Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1263-1353. http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/

[1] D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, Springer-Verlag, Berlin, 1932 ; D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, ONTI, M.–L., 1936 | MR | Zbl | MR | Zbl

[2] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Ergeb. Math. Grenzgeb., 14, Springer-Verlag, Berlin–Heidelberg–New York, 1972 ; G. S. M. Kokseter, U. O. Dzh. Mozer, Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR | Zbl | MR | Zbl

[3] P. McMullen, E. Schulte, Abstract regular polytopes, Encyclopedia Math. Appl., 92, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[4] P. McMullen, E. Schulte, Regular and chiral polytopes in low dimensions, arXiv: abs/math/0503389

[5] H. S. M. Coxeter, “Self-dual configurations and regular graphs”, Bull. Amer. Math. Soc., 56 (1950), 413–455 | DOI | MR | Zbl

[6] H. R. Brahana, “Regular maps and their groups”, Amer. J. Math., 49:2 (1927), 268–284 | DOI | MR | Zbl

[7] G. A. Jones, D. Singerman, “Theory of maps on orientable surfaces”, Proc. London Math. Soc. (3), 37:2 (1978), 273–307 | DOI | MR | Zbl

[8] J. Širáň,, “Regular maps on a given surface: a survey”, Topics in discrete mathematics, Algorithms Combin., 26, Springer-Verlag, Berlin, 2006, 591–609 | DOI | MR | Zbl

[9] A. Cayley, “On the theory of groups”, Proc. London Math. Soc. (3), 9 (1878), 126–133 | DOI | Zbl

[10] A. Cayley, “Desiderata and suggestions: No. 2. The theory of groups: graphical representation”, Amer. J. Math., 1:2 (1878), 174–176 | DOI | MR | Zbl

[11] H. S. M. Coxeter, “Configurations and maps”, Rep. Math. Colloquium (2), 8 (1948), 18–38 | MR | Zbl

[12] W. Threlfall, “Gruppenbilder”, Abh. Math.-Phys. Kl. Sächs. Akad. Wiss., 41:6 (1932), 1–59 | Zbl

[13] F. Klein, “Ueber die Transformation siebenter Ordnung der elliptischen Functionen”, Math. Ann., 14:3 (1878), 428–471 | DOI | MR | Zbl

[14] W. Dyck, “Ueber Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann'scher Flächen”, Math. Ann., 17:4 (1880), 473–509 | DOI | MR | Zbl

[15] F. A. Sherk, “The regular maps on a surface of genus three”, Canad. J. Math., 11 (1959), 452–480 | MR | Zbl

[16] D. Garbe, “Über die regulären Zerlegungen geschlossener orientierbarer Flächen”, J. Reine Angew. Math., 237 (1969), 39–55 | MR | Zbl

[17] P. Bergau, D. Garbe, “Non-orientable and orientable regular maps”, Groups—Korea 1988 (Pusan), Lecture Notes in Math., 1398, 1989, 29–42 | DOI | MR | Zbl

[18] D. Garbe, “A remark on nonsymmetric compact Riemann surfaces”, Arch. Math. (Basel), 30:1 (1978), 435–437 | DOI | MR | Zbl

[19] M. Conder, P. Dobcsányi, “Determination of all regular maps of small genus”, J. Combin. Theory Ser. B, 81:2 (2001), 224–242 | DOI | MR | Zbl

[20] A. V. Bolsinov, A. T. Fomenko, “Nekotorye aktualnye nereshennye zadachi po topologii integriruemykh gamiltonovykh sistem”, Topologichesie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 5–23

[21] S. E. Wilson, “Riemann surfaces over regular maps”, Canad. J. Math., 30:4 (1978), 763–782 | MR | Zbl

[22] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[23] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[24] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl

[25] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl

[26] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:3 (1987), 529–534 | MR | Zbl

[27] A. T. Fomenko, Kh. Tsishang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl | Zbl

[28] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 ; 185, no. 5, 1994 | MR | MR | Zbl | Zbl | MR | Zbl

[29] A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I, II”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 ; 82:1 (1995), 21–63 | DOI | DOI | MR | MR | Zbl | Zbl

[30] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl

[31] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[32] A. A. Oshemkov, “The topology of surfaces of constant energy and bifurcation diagrams for integrable cases of the dynamics of a rigid body on $\operatorname{SO}(4)$”, Russian Math. Surveys, 42:6 (1987), 241–242 | DOI | MR | Zbl

[33] A. A. Oshemkov, “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math., 205:4 (1995), 119–127 | MR | Zbl

[34] A. A. Oshemkov, “Opisanie izoenergeticheskikh poverkhnostei i integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Tr. sem. po vektornomu i tenzornomu analizu, 23 (1988), 122–132 | MR | Zbl

[35] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vektornomu i tenzornomu analizu, 25:2 (1993), 23–109 | Zbl

[36] A. A. Oshemkov, V. V. Sharko, “Classification of Morse-Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 | DOI | MR | Zbl

[37] E. A. Kudryavtseva, “Stable conjugation invariants of Hamiltonian systems on two-dimensional surfaces”, Soviet Math. Dokl., 58:1 (1998), 67–70 | MR | Zbl

[38] E. A. Kudryavtseva, “Ustoichivye topologicheskie i gladkie invarianty sopryazhennosti gamiltonovykh sistem na poverkhnostyakh”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 147–202

[39] Yu. A. Brailov, “Some cases of complete integrability of the Euler equations, and applications”, Soviet Math. Dokl., 27:1 (1983), 209–212 | MR | Zbl

[40] Yu. A. Brailov, E. A. Kudryavtseva, “Stable topological non-conjugacy of Hamiltonian systems on two-dimensional surfaces”, Moscow Univ. Math. Bull., 54:2 (1999), 20–27 | MR | Zbl

[41] N. V. Korovina, “Maximally symmetric bifurcations of Morse functions on two-dimensional surfaces”, Moscow Univ. Math. Bull., 54:2 (1999), 13–19 | MR | Zbl

[42] V. O. Manturov, “Bifurcations, atoms and knots”, Moscow Univ. Math. Bull., 55:1 (2000), 1–7 | MR | Zbl

[43] J. Kepler, The harmony of the world, Mem. Amer. Philos. Soc., 209, Amer. Philos. Soc., Philadelphia, PA, 1997 | MR | Zbl

[44] L. Heffter, “Ueber das Problem der Nachbargebiete”, Math. Ann., 38:4 (1891), 477–508 | DOI | MR | Zbl

[45] P. J. Heawood, “Map-colour theorem”, Quart. J. Math., 24 (1890), 332–338 | Zbl

[46] S. Bilinski, “Homogene mreže zatvorenih orijentabilnih ploha”, Rad Jugoslav. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke, 277 (1950), 129–164 | MR

[47] S. Bilinski, “Homogene Netze geschlossener orientierbarer Flächen”, Bull. Internat. Acad. Yougoslave Sci. Beaux-Arts (N.S.), 6 (1952), 59–75 | MR

[48] L. D. James, G. A. Jones, “Regular orientable imbeddings of complete graphs”, J. Combin. Theory Ser. B, 39:3 (1985), 353–367 | DOI | MR | Zbl

[49] S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965 | MR | Zbl | Zbl

[50] K. F. Ireland, M. I. Rosen, A classical introduction to modern number theory. Revised edition of Elements of number theory, Grad. Texts in Math., 84, Springer-Verlag, New York-Berlin, 1982 | MR | MR | Zbl | Zbl

[51] I. V. Ptitsyna, “Classification of closed minimal networks on tetrahedra”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 101–116 | DOI | MR | Zbl

[52] D. Garbe, “A generalization of the regular maps of type $\{4,4\}_{b,c}$ and $\{3,6\}_{b,c}$”, Canad. Math. Bull., 12:3 (1969), 293–297 | MR | Zbl