Maximally symmetric cell decompositions of surfaces
Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1263-1353
Voir la notice de l'article provenant de la source Math-Net.Ru
Regular (maximally symmetric) cell decompositions of closed oriented 2-dimensional surfaces (that is,
regular maps or regular abstract polyhedra) are considered. These objects are also known as maximally symmetric oriented atoms. An atom is reducible if it is
a branched covering of another atom, with branching points at vertices
of the decomposition and/or the centres of faces.
The following two problems have arisen in the theory of integrable Hamiltonian
systems: describe the irreducible maximally symmetric atoms; describe
all the maximally symmetric atoms covering a fixed irreducible
maximally symmetric atom. In this paper, these problems are
solved in important cases. As applications, the following maximally
symmetric atoms are listed: the atoms containing at most 30 edges; the atoms containing at most six faces; the atoms containing $p$ or $2p$ edges, where $p$ is a prime.
Bibliography: 52 titles.
@article{SM_2008_199_9_a0,
author = {E. A. Kudryavtseva and I. M. Nikonov and A. T. Fomenko},
title = {Maximally symmetric cell decompositions of surfaces},
journal = {Sbornik. Mathematics},
pages = {1263--1353},
publisher = {mathdoc},
volume = {199},
number = {9},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/}
}
TY - JOUR AU - E. A. Kudryavtseva AU - I. M. Nikonov AU - A. T. Fomenko TI - Maximally symmetric cell decompositions of surfaces JO - Sbornik. Mathematics PY - 2008 SP - 1263 EP - 1353 VL - 199 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/ LA - en ID - SM_2008_199_9_a0 ER -
E. A. Kudryavtseva; I. M. Nikonov; A. T. Fomenko. Maximally symmetric cell decompositions of surfaces. Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1263-1353. http://geodesic.mathdoc.fr/item/SM_2008_199_9_a0/