Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 131-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Two types of classes of entire functions ($W_\alpha$ and $Z_\alpha$), which are rapidly decreasing on the real axis are considered. Conditions to ensure that these classes are non-trivial are found and the classes of the corresponding Fourier transforms are described. Results on the classes $Z_\alpha$ are applied to the question of whether a rapidly decreasing function with rapidly decreasing Fourier transform is trivial. This yields not just an extension of Morgan's well-known theorem, but also its converse. Bibliography: 18 titles.
@article{SM_2008_199_1_a5,
     author = {A. M. Sedletskii},
     title = {Classes of entire functions that are rapidly decreasing on the real axis: theory and applications},
     journal = {Sbornik. Mathematics},
     pages = {131--157},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 131
EP  - 157
VL  - 199
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/
LA  - en
ID  - SM_2008_199_1_a5
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
%J Sbornik. Mathematics
%D 2008
%P 131-157
%V 199
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/
%G en
%F SM_2008_199_1_a5
A. M. Sedletskii. Classes of entire functions that are rapidly decreasing on the real axis: theory and applications. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 131-157. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/