Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 131-157
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two types of classes of entire functions ($W_\alpha$ and $Z_\alpha$), which are rapidly decreasing on the real axis are considered. Conditions to ensure that these classes are non-trivial are found and the classes of the corresponding Fourier transforms are described. Results on the classes $Z_\alpha$ are applied to the question of whether a rapidly decreasing function with rapidly decreasing Fourier transform is trivial. This yields not just an extension of Morgan's well-known theorem, but also its converse. Bibliography: 18 titles.
@article{SM_2008_199_1_a5,
     author = {A. M. Sedletskii},
     title = {Classes of entire functions that are rapidly decreasing on the real axis: theory and applications},
     journal = {Sbornik. Mathematics},
     pages = {131--157},
     year = {2008},
     volume = {199},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 131
EP  - 157
VL  - 199
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/
LA  - en
ID  - SM_2008_199_1_a5
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
%J Sbornik. Mathematics
%D 2008
%P 131-157
%V 199
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/
%G en
%F SM_2008_199_1_a5
A. M. Sedletskii. Classes of entire functions that are rapidly decreasing on the real axis: theory and applications. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 131-157. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a5/

[1] I. M. Gelfand, G. E. Shilov, “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6(58) (1953), 3–54 | MR | Zbl

[2] G. E. Shilov, “Ob odnoi probleme kvazianalitichnosti”, Dokl. AN SSSR, 102:5 (1955), 893–895 | MR | Zbl

[3] L. Hörmander, “La transformation de Legendre et le théorème de Paley–Wiener”, C. R. Acad. Sci. Paris, 240:4 (1955), 392–395 | MR | Zbl

[4] K. I. Babenko, “Ob odnoi novoi probleme kvazianalitichnosti i o preobrazovanii Fure tselykh funktsii”, Tr. MMO, 5 (1956), 523–542 | MR | Zbl

[5] K. I. Babenko, “On certain classes of spaces of infinitely differentiable functions”, Soviet Math. Dokl., 1 (1960), 738–741 | MR | Zbl

[6] B. L. Gurevich, “Novye tipy prostranstv osnovnykh i obobschennykh funktsii i zadachi Koshi dlya sistem differentsialno-raznostnykh uravnenii”, Dokl. AN SSSR, 108:6 (1956), 1001–1003 | MR | Zbl

[7] M. M. Dzhrbashyan, “Teoremy edinstvennosti dlya preobrazovanii Fure i dlya beskonechno differentsiruemykh funktsii”, Izv. AN ArmSSR. Ser. fiz.-matem. nauk, 10:6 (1957), 7–25 | MR

[8] Y. Katznelson, S. Mandelbrojt, “Quelques classes de fonctions entières. Le problème de Gel'fand et Šilov”, C. R. Acad. Sci. Paris, 257:2 (1963), 345–348 | MR | Zbl

[9] I. M. Gel'fand, G. E. Šhilov, Generalized functions. Vol. 2. Spaces of fundamental and generalized functions, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl

[10] I. M. Gel'fand, G. E. Šhilov, Generalized functions. Vol. 3. Theory of differential equations, Academic Press, New York–London, 1967 | MR | MR | Zbl | Zbl

[11] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl

[12] R. A. Zalik, “Remarks on a paper of Gel'fand and Šilov on Fourier transforms”, J. Math. Anal. Appl., 102:1 (1984), 102–112 | DOI | MR | Zbl

[13] A. M. Sedletskiǐ, “Classes of entire functions that rapidly decrease on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 37–43 | MR | Zbl

[14] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[15] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg, 1976 | DOI | MR | MR | Zbl | Zbl

[16] G. W. Morgan, “A note on Fourier transforms”, J. Lond. Math. Soc., 9:3 (1934), 187–192 | DOI | Zbl

[17] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[18] A. A. Gol'dberg, B. Ya. Levin, I. V. Ostrovskii, “Entire and meromorphic functions”, Complex analysis I, Encyclopaedia Math. Sci., 85, Springer-Verlag, Berlin, 1995, 1–193 | MR | MR | Zbl | Zbl