Cartan-type estimates for potentials with Cauchy
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1175-1220

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\nu$ be a (complex) Radon measure in $\mathbb C$ with compact support and finite variation and let $$ \mathscr C_*\nu(z)=\sup_{\varepsilon>0} \biggl|\int_{|\zeta-z|>\varepsilon}\frac{d\nu(\zeta)}{\zeta-z}\biggr| $$ be the maximal Cauchy integral. Estimates for the Hausdorff $h$-content of the set $\mathscr Z^*(\nu,P)=\bigl\{z\in\mathbb C:\mathscr C_*\nu(z)>P\bigr\}$ are obtained, where $h$ is a measuring function and $P$ is a fixed positive number. These estimates are shown to be sharp up to the values of the absolute constants involved. A similar problem is also considered for potentials with arbitrary real non-increasing kernels of positive measure in $\mathbb R^m$, $m\geqslant1$. As an application of the so-developed machinery, results on connections between the analytic capacity and the Hausdorff measure are obtained (for instance, an analogue of Frostman's theorem on classical capacities). Bibliography: 37 titles.
@article{SM_2007_198_8_a6,
     author = {V. Ya. \`Eiderman},
     title = {Cartan-type estimates for potentials with {Cauchy}},
     journal = {Sbornik. Mathematics},
     pages = {1175--1220},
     publisher = {mathdoc},
     volume = {198},
     number = {8},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/}
}
TY  - JOUR
AU  - V. Ya. Èiderman
TI  - Cartan-type estimates for potentials with Cauchy
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1175
EP  - 1220
VL  - 198
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/
LA  - en
ID  - SM_2007_198_8_a6
ER  - 
%0 Journal Article
%A V. Ya. Èiderman
%T Cartan-type estimates for potentials with Cauchy
%J Sbornik. Mathematics
%D 2007
%P 1175-1220
%V 198
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/
%G en
%F SM_2007_198_8_a6
V. Ya. Èiderman. Cartan-type estimates for potentials with Cauchy. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1175-1220. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/