Cartan-type estimates for potentials with Cauchy
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1175-1220
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\nu$ be a (complex) Radon measure in $\mathbb C$ with compact support and finite variation and let $$ \mathscr C_*\nu(z)=\sup_{\varepsilon>0} \biggl|\int_{|\zeta-z|>\varepsilon}\frac{d\nu(\zeta)}{\zeta-z}\biggr| $$ be the maximal Cauchy integral. Estimates for the Hausdorff $h$-content of the set $\mathscr Z^*(\nu,P)=\bigl\{z\in\mathbb C:\mathscr C_*\nu(z)>P\bigr\}$ are obtained, where $h$ is a measuring function and $P$ is a fixed positive number. These estimates are shown to be sharp up to the values of the absolute constants involved. A similar problem is also considered for potentials with arbitrary real non-increasing kernels of positive measure in $\mathbb R^m$, $m\geqslant1$. As an application of the so-developed machinery, results on connections between the analytic capacity and the Hausdorff measure are obtained (for instance, an analogue of Frostman's theorem on classical capacities). Bibliography: 37 titles.
@article{SM_2007_198_8_a6,
     author = {V. Ya. \`Eiderman},
     title = {Cartan-type estimates for potentials with {Cauchy}},
     journal = {Sbornik. Mathematics},
     pages = {1175--1220},
     year = {2007},
     volume = {198},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/}
}
TY  - JOUR
AU  - V. Ya. Èiderman
TI  - Cartan-type estimates for potentials with Cauchy
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1175
EP  - 1220
VL  - 198
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/
LA  - en
ID  - SM_2007_198_8_a6
ER  - 
%0 Journal Article
%A V. Ya. Èiderman
%T Cartan-type estimates for potentials with Cauchy
%J Sbornik. Mathematics
%D 2007
%P 1175-1220
%V 198
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/
%G en
%F SM_2007_198_8_a6
V. Ya. Èiderman. Cartan-type estimates for potentials with Cauchy. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1175-1220. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/

[1] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[2] V. Ya. Eiderman, “Otsenki kartanovskogo tipa dlya potentsiala Koshi”, Dokl. RAN, 407:5 (2006), 604–608 | MR

[3] “Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications”, Ann. Sci. École Norm. Sup. (3), 45 (1928), 255–346 | MR | Zbl

[4] L. V. Ahlfors, “Ein Satz von Henri Cartan und seine Anwendung auf die Theorie der meromorphen Funktionen”, Comment. Phys.-Math., 5:16 (1931), 1–19 | Zbl

[5] G. Valiron, Directions de Borel des fonctions méromorphes, Gauthier-Villars, Paris, 1938 | Zbl

[6] A. J. Macintyre, W. H. J. Fuchs, “Inequalities for the logarithmic derivatives of a polynomial”, J. London Math. Soc., 15:3 (1940), 162–168 | DOI | MR | Zbl

[7] N. V. Govorov, “Ob otsenke snizu funktsii, subgarmonicheskoi v kruge”, Teoriya funktsii, funkts. analiz i ikh prilozh., 6 (1968), 130–150, Kharkov | MR | Zbl

[8] N. N. Meiman, “Ob otsenke sverkhu potentsiala ploskogo elektrostaticheskogo polya”, Dokl. AN SSSR, 202 (1972), 1268–1270 | MR | Zbl

[9] W. K. Hayman, “Questions of regularity connected with the Phragmén–Lindelëf principle”, J. Math. Pures Appl. (9), 35 (1956), 115–126 | MR | Zbl

[10] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 ; N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl | MR | Zbl

[11] V. Ya. Eiderman, “Otsenki potentsialov i $\delta$-subgarmonicheskikh funktsii vne isklyuchitelnykh mnozhestv”, Izv. RAN. Ser. matem., 61:6 (1997), 181–218 | MR | Zbl

[12] E. A. Gorin, A. L. Koldobskii, “O potentsialakh mer v banakhovykh prostranstvakh”, Sib. matem. zhurn., 28:1 (1987), 65–80 | MR | Zbl

[13] M. de Guzmán, Differentiation of integrals in $\mathbb R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | DOI | MR | Zbl

[14] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, t. 1, Mir, M., 1980 ; W. K. Hayman, P. B. Kennedy, Subharmonic functions, Vol. I, Academic Press, London–New York–San Francisco, 1976 | MR | Zbl | MR | Zbl

[15] G. Boole, “On the comparison of transcendents, with certain applications to the theory of definite integrals”, Philos. Trans. R. Soc., 147 (1857), 745–803 | DOI

[16] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR | Zbl

[17] S. V. Hruščëv, S. A. Vinogradov, “Free interpolation in the space of uniformly convergent Taylor series”, Complex Analysis and Spectral Theory, Lecture Notes in Math., 864, Springer-Verlag, Berlin–New York, 1981, 171–213 | DOI | MR | Zbl

[18] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[19] N. V. Govorov, Yu. P. Lapenko, “Otsenki snizu modulya logarifmicheskoi proizvodnoi mnogochlena”, Matem. zametki, 23:4 (1978), 527–535 | MR | Zbl

[20] A. A. Pekarskii, “Neravenstva dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh Lorentsa”, Vestn. NAN Belarusi. Ser. fiz.-matem. nauk, 3 (1997), 14–16 | MR

[21] J. M. Marstrand, “The distribution of the logarithmic derivative of a polynomial”, J. London Math. Soc., 38 (1963), 495–500 | DOI | MR | Zbl

[22] Dzh. M. Anderson, V. Ya. Eiderman, “Otsenki preobrazovaniya Koshi tochechnykh mass (logarifmicheskoi proizvodnoi mnogochlena)”, Dokl. RAN, 401:5 (2005), 583–586 | MR

[23] J. M. Anderson, V. Ya. Eiderman, “Cauchy transforms of point masses: the logarithmic derivative of polynomials”, Ann. of Math. (2), 163:3 (2006), 1057–1076 | DOI | MR | Zbl

[24] M. S. Melnikov, “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Matem. sb., 186:6 (1995), 57–76 | MR | Zbl

[25] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149 | DOI | MR | Zbl

[26] X. Tolsa, “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl

[27] X. Tolsa, “On the analytic capacity $\gamma_+$”, Indiana Univ. Math. J., 51:2 (2002), 317–344 | DOI | MR | Zbl

[28] M. Melnikov, X. Tolsa, “Estimate of the Cauchy integral over Ahlfors regular curves”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 159–176 | MR | Zbl

[29] X. Tolsa, “Cotlar's inequality without the doubling condition and existence of principal values for the Cauchy integral of measures”, J. Reine Angew. Math., 502 (1998), 199–235 | MR | Zbl

[30] F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 1998:9 (1998), 463–487 | DOI | MR | Zbl

[31] A. Volberg, Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conf. Ser. in Math., 100, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[32] L. Karleson, Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 ; L. Carleson, Selected problems on exceptional sets, Nostrand, Princeton, NJ–Toronto, ON–London, 1967 | MR | Zbl | MR | Zbl

[33] P. Mattila, “On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length”, Publ. Mat., 40:1 (1996), 195–204 | MR | Zbl

[34] O. Ore, Grafy i ikh primenenie, URSS, M., 2002 ; O. Ore, Graphs and their uses, New Math. Library, 34, Mathematical Association of America, Washington, DC, 1990 | Zbl | MR | Zbl

[35] A. Kolmogoroff, “Über das Gesetz des iterierten Logarithmus”, Math. Ann., 101:1 (1929), 126–135 ; A. N. Kolmogorov, Teoriya veroyatnostei i matematicheskaya statistika (sbornik statei), Nauka, M., 1986 | DOI | MR | Zbl | MR | Zbl

[36] V. Ya. Eiderman, “Mera Khausdorfa i emkost, assotsiirovannaya s potentsialami Koshi”, Matem. zametki, 63:6 (1998), 923–934 | MR | Zbl

[37] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | DOI | MR | Zbl