@article{SM_2007_198_8_a6,
author = {V. Ya. \`Eiderman},
title = {Cartan-type estimates for potentials with {Cauchy}},
journal = {Sbornik. Mathematics},
pages = {1175--1220},
year = {2007},
volume = {198},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/}
}
V. Ya. Èiderman. Cartan-type estimates for potentials with Cauchy. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1175-1220. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a6/
[1] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[2] V. Ya. Eiderman, “Otsenki kartanovskogo tipa dlya potentsiala Koshi”, Dokl. RAN, 407:5 (2006), 604–608 | MR
[3] “Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications”, Ann. Sci. École Norm. Sup. (3), 45 (1928), 255–346 | MR | Zbl
[4] L. V. Ahlfors, “Ein Satz von Henri Cartan und seine Anwendung auf die Theorie der meromorphen Funktionen”, Comment. Phys.-Math., 5:16 (1931), 1–19 | Zbl
[5] G. Valiron, Directions de Borel des fonctions méromorphes, Gauthier-Villars, Paris, 1938 | Zbl
[6] A. J. Macintyre, W. H. J. Fuchs, “Inequalities for the logarithmic derivatives of a polynomial”, J. London Math. Soc., 15:3 (1940), 162–168 | DOI | MR | Zbl
[7] N. V. Govorov, “Ob otsenke snizu funktsii, subgarmonicheskoi v kruge”, Teoriya funktsii, funkts. analiz i ikh prilozh., 6 (1968), 130–150, Kharkov | MR | Zbl
[8] N. N. Meiman, “Ob otsenke sverkhu potentsiala ploskogo elektrostaticheskogo polya”, Dokl. AN SSSR, 202 (1972), 1268–1270 | MR | Zbl
[9] W. K. Hayman, “Questions of regularity connected with the Phragmén–Lindelëf principle”, J. Math. Pures Appl. (9), 35 (1956), 115–126 | MR | Zbl
[10] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 ; N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl | MR | Zbl
[11] V. Ya. Eiderman, “Otsenki potentsialov i $\delta$-subgarmonicheskikh funktsii vne isklyuchitelnykh mnozhestv”, Izv. RAN. Ser. matem., 61:6 (1997), 181–218 | MR | Zbl
[12] E. A. Gorin, A. L. Koldobskii, “O potentsialakh mer v banakhovykh prostranstvakh”, Sib. matem. zhurn., 28:1 (1987), 65–80 | MR | Zbl
[13] M. de Guzmán, Differentiation of integrals in $\mathbb R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | DOI | MR | Zbl
[14] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, t. 1, Mir, M., 1980 ; W. K. Hayman, P. B. Kennedy, Subharmonic functions, Vol. I, Academic Press, London–New York–San Francisco, 1976 | MR | Zbl | MR | Zbl
[15] G. Boole, “On the comparison of transcendents, with certain applications to the theory of definite integrals”, Philos. Trans. R. Soc., 147 (1857), 745–803 | DOI
[16] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR | Zbl
[17] S. V. Hruščëv, S. A. Vinogradov, “Free interpolation in the space of uniformly convergent Taylor series”, Complex Analysis and Spectral Theory, Lecture Notes in Math., 864, Springer-Verlag, Berlin–New York, 1981, 171–213 | DOI | MR | Zbl
[18] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl
[19] N. V. Govorov, Yu. P. Lapenko, “Otsenki snizu modulya logarifmicheskoi proizvodnoi mnogochlena”, Matem. zametki, 23:4 (1978), 527–535 | MR | Zbl
[20] A. A. Pekarskii, “Neravenstva dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh Lorentsa”, Vestn. NAN Belarusi. Ser. fiz.-matem. nauk, 3 (1997), 14–16 | MR
[21] J. M. Marstrand, “The distribution of the logarithmic derivative of a polynomial”, J. London Math. Soc., 38 (1963), 495–500 | DOI | MR | Zbl
[22] Dzh. M. Anderson, V. Ya. Eiderman, “Otsenki preobrazovaniya Koshi tochechnykh mass (logarifmicheskoi proizvodnoi mnogochlena)”, Dokl. RAN, 401:5 (2005), 583–586 | MR
[23] J. M. Anderson, V. Ya. Eiderman, “Cauchy transforms of point masses: the logarithmic derivative of polynomials”, Ann. of Math. (2), 163:3 (2006), 1057–1076 | DOI | MR | Zbl
[24] M. S. Melnikov, “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Matem. sb., 186:6 (1995), 57–76 | MR | Zbl
[25] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149 | DOI | MR | Zbl
[26] X. Tolsa, “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl
[27] X. Tolsa, “On the analytic capacity $\gamma_+$”, Indiana Univ. Math. J., 51:2 (2002), 317–344 | DOI | MR | Zbl
[28] M. Melnikov, X. Tolsa, “Estimate of the Cauchy integral over Ahlfors regular curves”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 159–176 | MR | Zbl
[29] X. Tolsa, “Cotlar's inequality without the doubling condition and existence of principal values for the Cauchy integral of measures”, J. Reine Angew. Math., 502 (1998), 199–235 | MR | Zbl
[30] F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 1998:9 (1998), 463–487 | DOI | MR | Zbl
[31] A. Volberg, Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conf. Ser. in Math., 100, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[32] L. Karleson, Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 ; L. Carleson, Selected problems on exceptional sets, Nostrand, Princeton, NJ–Toronto, ON–London, 1967 | MR | Zbl | MR | Zbl
[33] P. Mattila, “On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length”, Publ. Mat., 40:1 (1996), 195–204 | MR | Zbl
[34] O. Ore, Grafy i ikh primenenie, URSS, M., 2002 ; O. Ore, Graphs and their uses, New Math. Library, 34, Mathematical Association of America, Washington, DC, 1990 | Zbl | MR | Zbl
[35] A. Kolmogoroff, “Über das Gesetz des iterierten Logarithmus”, Math. Ann., 101:1 (1929), 126–135 ; A. N. Kolmogorov, Teoriya veroyatnostei i matematicheskaya statistika (sbornik statei), Nauka, M., 1986 | DOI | MR | Zbl | MR | Zbl
[36] V. Ya. Eiderman, “Mera Khausdorfa i emkost, assotsiirovannaya s potentsialami Koshi”, Matem. zametki, 63:6 (1998), 923–934 | MR | Zbl
[37] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | DOI | MR | Zbl