$\mathbb Q$-factorial quartic threefolds
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1165-1174

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a nodal quartic threefold $X$ containing no planes is $\mathbb Q$-factorial if it has at most 12 singular points. An exception here is a quartic with precisely 12 singularities containing a quadric surface. Some geometric constructions relating to such a quartic are presented. Bibliography: 14 titles.
@article{SM_2007_198_8_a5,
     author = {K. A. Shramov},
     title = {$\mathbb Q$-factorial quartic threefolds},
     journal = {Sbornik. Mathematics},
     pages = {1165--1174},
     publisher = {mathdoc},
     volume = {198},
     number = {8},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a5/}
}
TY  - JOUR
AU  - K. A. Shramov
TI  - $\mathbb Q$-factorial quartic threefolds
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1165
EP  - 1174
VL  - 198
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a5/
LA  - en
ID  - SM_2007_198_8_a5
ER  - 
%0 Journal Article
%A K. A. Shramov
%T $\mathbb Q$-factorial quartic threefolds
%J Sbornik. Mathematics
%D 2007
%P 1165-1174
%V 198
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a5/
%G en
%F SM_2007_198_8_a5
K. A. Shramov. $\mathbb Q$-factorial quartic threefolds. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1165-1174. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a5/