$\mathbb Q$-factorial quartic threefolds
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1165-1174
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a nodal quartic threefold $X$ containing
no planes is $\mathbb Q$-factorial if it has at most
12 singular points. An exception here is a quartic with precisely
12 singularities containing a quadric surface. Some geometric
constructions relating to such a quartic are presented.
Bibliography: 14 titles.
@article{SM_2007_198_8_a5,
author = {K. A. Shramov},
title = {$\mathbb Q$-factorial quartic threefolds},
journal = {Sbornik. Mathematics},
pages = {1165--1174},
publisher = {mathdoc},
volume = {198},
number = {8},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a5/}
}
K. A. Shramov. $\mathbb Q$-factorial quartic threefolds. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1165-1174. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a5/