Calculation of the variance in a~problem in the theory of continued fractions
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 887-907

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the random variable $N(\alpha,R)=\#\{j\geqslant1:Q_j(\alpha)\leqslant R\}$, where $\alpha\in[0;1)$ and $P_j(\alpha)/Q_j(\alpha)$ is the $j$th convergent of the continued fraction expansion of the number $\alpha=[0;t_1,t_2,\dots]$. For the mean value $$ N(R)=\int_0^1N(\alpha,R)\,d\alpha $$ and variance $$ D(R)=\int_0^1\bigl(N(\alpha,R)-N(R)\bigr)^2\,d\alpha $$ of the random variable $N(\alpha,R)$, we prove the asymptotic formulae with two significant terms $$ N(R)=N_1\log R+N_0+O(R^{-1+\varepsilon}), \quad D(R)=D_1\log R+D_0+O(R^{-1/3+\varepsilon}). $$ Bibliography: 13 titles.
@article{SM_2007_198_6_a6,
     author = {A. V. Ustinov},
     title = {Calculation of the  variance in a~problem in the theory of continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {887--907},
     publisher = {mathdoc},
     volume = {198},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - Calculation of the  variance in a~problem in the theory of continued fractions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 887
EP  - 907
VL  - 198
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/
LA  - en
ID  - SM_2007_198_6_a6
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T Calculation of the  variance in a~problem in the theory of continued fractions
%J Sbornik. Mathematics
%D 2007
%P 887-907
%V 198
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/
%G en
%F SM_2007_198_6_a6
A. V. Ustinov. Calculation of the  variance in a~problem in the theory of continued fractions. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 887-907. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/