Calculation of the  variance in a~problem in the theory of continued fractions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 887-907
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the random variable
$N(\alpha,R)=\#\{j\geqslant1:Q_j(\alpha)\leqslant R\}$,
where $\alpha\in[0;1)$ and $P_j(\alpha)/Q_j(\alpha)$ is the
$j$th convergent of the continued fraction expansion of the number
$\alpha=[0;t_1,t_2,\dots]$. For the mean value
$$
N(R)=\int_0^1N(\alpha,R)\,d\alpha
$$
and variance
$$
D(R)=\int_0^1\bigl(N(\alpha,R)-N(R)\bigr)^2\,d\alpha
$$
of the random
variable $N(\alpha,R)$, we prove the asymptotic formulae with two
significant terms
$$
N(R)=N_1\log R+N_0+O(R^{-1+\varepsilon}), \quad
D(R)=D_1\log R+D_0+O(R^{-1/3+\varepsilon}).
$$ Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_2007_198_6_a6,
     author = {A. V. Ustinov},
     title = {Calculation of the  variance in a~problem in the theory of continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {887--907},
     publisher = {mathdoc},
     volume = {198},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/}
}
                      
                      
                    A. V. Ustinov. Calculation of the variance in a~problem in the theory of continued fractions. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 887-907. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/
