Calculation of the variance in a problem in the theory of continued fractions
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 887-907 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the random variable $N(\alpha,R)=\#\{j\geqslant1:Q_j(\alpha)\leqslant R\}$, where $\alpha\in[0;1)$ and $P_j(\alpha)/Q_j(\alpha)$ is the $j$th convergent of the continued fraction expansion of the number $\alpha=[0;t_1,t_2,\dots]$. For the mean value $$ N(R)=\int_0^1N(\alpha,R)\,d\alpha $$ and variance $$ D(R)=\int_0^1\bigl(N(\alpha,R)-N(R)\bigr)^2\,d\alpha $$ of the random variable $N(\alpha,R)$, we prove the asymptotic formulae with two significant terms $$ N(R)=N_1\log R+N_0+O(R^{-1+\varepsilon}), \quad D(R)=D_1\log R+D_0+O(R^{-1/3+\varepsilon}). $$ Bibliography: 13 titles.
@article{SM_2007_198_6_a6,
     author = {A. V. Ustinov},
     title = {Calculation of the variance in a~problem in the theory of continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {887--907},
     year = {2007},
     volume = {198},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - Calculation of the variance in a problem in the theory of continued fractions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 887
EP  - 907
VL  - 198
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/
LA  - en
ID  - SM_2007_198_6_a6
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T Calculation of the variance in a problem in the theory of continued fractions
%J Sbornik. Mathematics
%D 2007
%P 887-907
%V 198
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/
%G en
%F SM_2007_198_6_a6
A. V. Ustinov. Calculation of the variance in a problem in the theory of continued fractions. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 887-907. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a6/

[1] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998; R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics: a foundation for computer science, Addison-Wesley Publ., Amsterdam, 1994 | MR | Zbl

[2] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number theory and analysis (Papers in honor of Edmund Landau), Plenum, New York, 1969, 87–96 | MR | Zbl

[3] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | MR | Zbl

[4] D. E. Knuth, “Evaluation of Porter's constant”, Comput. Math. Appl., 2:2 (1976), 137–139 | DOI | Zbl

[5] V. A. Bykovskii, “Otsenka dispersii dlin konechnykh nepreryvnykh drobei”, Fundam. i prikl. matem., 11:6 (2005), 15–26 | MR

[6] A. V. Ustinov, “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Zapiski nauch. sem. POMI, 322 (2005), 186–211 ; A. V. Ustinov, “On statistical properties of finite continued fractions”, J. Math. Sci. (N.Y.), 137:2 (2006), 4722–4738 | MR | Zbl | DOI

[7] A. V. Ustinov, “O statistikakh Gaussa–Kuzmina dlya konechnykh tsepnykh drobei”, Fundam. i prikl. matem., 11:6 (2005), 195–208 | MR

[8] V. Baladi, B. Vallée, “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl

[9] I. V. Arnold, Teoriya chisel, Gosud. uchebno-pedagogicheskoe izd-vo Narkomprosa RSFSR, M., 1939

[10] S. R. Finch, Mathematical constants, Encyclopedia Math. Appl., 94, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[11] I. M. Vinogradov, Osnovy teorii chisel, 8-e izd., Nauka, M., 1972 ; I. M. Vinogradov, Elements of number theory, Dover Publ., New York, 1954 | MR | Zbl | MR | Zbl

[12] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[13] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | MR | Zbl