Convergence in gradient systems with branching of
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 817-838
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic model is a semilinear elliptic equation with coercive $C^1$ non-linearity:
$\Delta\psi+f(\psi)=0$ in $\Omega$, $\psi=0$ on $\partial\Omega$, where $\Omega\subset\mathbb R^N$ is a bounded smooth domain. The main hypothesis
$(H_R)$ about resonance branching is as follows: if a branching of equilibria occurs at a point $\psi$ with $k$-dimensional kernel of the linearized operator $\Delta+f'(\psi)I$, then the branching subset $S_k$ at $\psi$ is a locally smooth $k$-dimensional manifold.
For $N=1$ the first result on the stabilization to a single equilibrium
is due to Zelenyak (1968).
It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions,
can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems
is also considered.
The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems.
Bibliography: 32 titles.
@article{SM_2007_198_6_a3,
author = {V. A. Galaktionov and S. I. Pokhozhaev and A. E. Shishkov},
title = {Convergence in gradient systems with branching of},
journal = {Sbornik. Mathematics},
pages = {817--838},
publisher = {mathdoc},
volume = {198},
number = {6},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a3/}
}
TY - JOUR AU - V. A. Galaktionov AU - S. I. Pokhozhaev AU - A. E. Shishkov TI - Convergence in gradient systems with branching of JO - Sbornik. Mathematics PY - 2007 SP - 817 EP - 838 VL - 198 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2007_198_6_a3/ LA - en ID - SM_2007_198_6_a3 ER -
V. A. Galaktionov; S. I. Pokhozhaev; A. E. Shishkov. Convergence in gradient systems with branching of. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 817-838. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a3/