Fractional monodromy in the case of arbitrary
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 383-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of fractional monodromy is proved for the compact Lagrangian fibration on a symplectic 4-manifold that corresponds to two oscillators with arbitrary non-trivial resonant frequencies. Here one means by the monodromy corresponding to a loop in the total space of the fibration the transformation of the fundamental group of a regular fibre, which is diffeomorphic to the 2-torus. In the example under consideration the fibration is defined by a pair of functions in involution, one of which is the Hamiltonian of the system of two oscillators with frequency ratio $m_1:(-m_2)$, where $m_1$, $m_2$ are arbitrary coprime positive integers distinct from the trivial pair $m_1=m_2=1$. This is a generalization of the result on the existence of fractional monodromy in the case $m_1=1$, $m_2=2$ published before. Bibliography: 39 titles.
@article{SM_2007_198_3_a3,
     author = {N. N. Nekhoroshev},
     title = {Fractional monodromy in the case of arbitrary},
     journal = {Sbornik. Mathematics},
     pages = {383--424},
     year = {2007},
     volume = {198},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/}
}
TY  - JOUR
AU  - N. N. Nekhoroshev
TI  - Fractional monodromy in the case of arbitrary
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 383
EP  - 424
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/
LA  - en
ID  - SM_2007_198_3_a3
ER  - 
%0 Journal Article
%A N. N. Nekhoroshev
%T Fractional monodromy in the case of arbitrary
%J Sbornik. Mathematics
%D 2007
%P 383-424
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/
%G en
%F SM_2007_198_3_a3
N. N. Nekhoroshev. Fractional monodromy in the case of arbitrary. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 383-424. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | Zbl

[2] N. N. Nekhoroshev, “Peremennye deistvie-ugol i ikh obobscheniya”, Tr. MMO, 26 (1972), 181–198 | MR | Zbl

[3] J. J. Duistermaat, “On global action-angle coordinates”, Commun. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl

[4] R. H. Cushman, “Geometry of the energy momentum mapping of the spherical pendulum”, CWI Newslett., 1 (1983), 4–18 | MR

[5] R. H. Cushman, J. J. Duistermaat, “Non-Hamiltonian monodromy”, J. Differential Equations, 172:1 (2001), 42–58 | DOI | MR | Zbl

[6] R. H. Cushman, D. A. Sadovskiǐ, “Monodromy in the hydrogen atom in crossed fields”, Phys. D, 142:1–2 (2000), 166–196 | DOI | MR | Zbl

[7] R. H. Cushman, Vũ Ngoc San, “Sign of the monodromy for Liouville integrable systems”, Ann. Henri Poincaré, 3:5 (2002), 883–894 | DOI | MR | Zbl

[8] R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, Birkhäuser, Basel, 1997 | MR | Zbl

[9] L. M. Lerman, Ya. L. Umanskii, Four-dimensional integrable Hamiltonian systems with simple singular points (topological aspects), Transl. Math. Monogr., 176, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[10] V. S. Matveev, “Integriruemye gamiltonovy sistemy s dvumya stepenyami svobody. Topologicheskoe stroenie nasyschennykh okrestnostei tochek tipa fokus-fokus i sedlo-sedlo”, Matem. sb., 187:4 (1996), 29–58 | MR | Zbl

[11] Nguyen Tien Zung, “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl

[12] Nguyen Tien Zung, “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl

[13] R. H. Cushman, J. J. Duistermaat, “The quantum mechanical spherical pendulum”, Bull. Amer. Math. Soc, 19:2 (1988), 475–479 | DOI | MR | Zbl

[14] Vũ Ngoc San, “Quantum monodromy in integrable systems”, Comm. Math. Phys., 203:2 (1999), 465–479 | DOI | MR | Zbl

[15] G. Dhont, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, V. Boudon, “Analysis of the “Unusual” vibrational components of triply degenerate vibrational mode $\nu_6$ of Mo(CO)$_6$ based on the classical interpretation of the effective rotation-vibration Hamiltonian”, J. Molecular Spectroscopy, 201 (2000), 95–108 | DOI

[16] F. Faure, B. I. Zhilinskiǐ, “Topological Chern indices in molecular spectra”, Phys. Rev. Lett., 85:5 (2000), 960–963 | DOI

[17] F. Faure, B. I. Zhilinskiǐ, “Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum”, Lett. Math. Phys., 55:3 (2001), 219–238 | DOI | MR | Zbl

[18] A. Giacobbe, R. H. Cushman, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Monodromy of the quantum $1:1:2$ resonant swing spring”, J. Math. Phys., 45:12 (2004), 5076–5100 | DOI | MR | Zbl

[19] L. Grondin, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Monodromy as topological obstruction to global action-angle variables in system with coupled angular momenta and rearrangement of bands in quantum spectra”, Phys. Rev. A, 65:1 (2002), 012105 | DOI

[20] D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Qualitative analysis of vibration-rotation Hamiltonians for spherical top molecules”, Molecular Phys., 65:1 (1988), 109–128 | DOI

[21] D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Monodromy, diabolic points, and angular momentum coupling”, Phys. Lett. A, 256:4 (1999), 235–244 | DOI | MR | Zbl

[22] B. I. Zhilinskiǐ, “Symmetry, invariants, and topology in molecular models”, Phys. Rep., 341:1–6 (2001), 85–171 | DOI | MR | Zbl

[23] B. I. Zhilinskiǐ, S. Brodersen, “The symmetry of the vibrational components in $T_d$ molecules”, J. Molecular Spectroscopy, 163:2 (1994), 326–338 | DOI

[24] I. N. Kozin, R. M. Roberts, “Monodromy in the spectrum of a rigid symmetric top molecule in an electric fields”, J. Chem. Phys, 118:23 (2003), 10523–10533 | DOI

[25] N. N. Nekhoroshev, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Fractional Hamiltonian monodromy”, Ann. Henri Poincaré, 7:6 (2006), 1099–1211 | DOI | MR | Zbl

[26] N. N. Nekhoroshev, D. A. Sadovskii, B. I. Zhilinskii, “Fractional monodromy of resonant classical and quantum oscillators”, C. R. Math. Acad. Sci. Paris, 335:11 (2002), 985–988 | DOI | MR | Zbl

[27] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I: The classification of critical points, caustics and wave fronts, Monogr. Math., 82, Birkhäuser, Boston, 1985 | MR | Zbl | MR | Zbl

[28] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 ; A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, Gordon and Breach, Luxembourg, 1995 | MR | Zbl | MR | Zbl

[29] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl

[30] Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities”, Compos. Math., 101:2 (1996), 179–215 | MR | Zbl

[31] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy: geometriya, topologiya, klassifikatsiya, Udmurtskii un-t, Izhevsk, 1999 ; A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl | MR | Zbl

[32] N. N. Nekhoroshev, “Tipy integriruemosti na podmnogoobrazii i obobscheniya teoremy Gordona”, Tr. MMO, 66 (2005), 184–262 | MR

[33] N. N. Nekhoroshev, “Generalizations of Gordon theorem”, Regul. Chaotic Dyn., 7:3 (2002), 239–247 | DOI | MR | Zbl

[34] N. N. Nekhoroshev, “Teorema Puankare–Lyapunova–Liuvillya–Arnolda”, Funkts. analiz i ego pril., 28:2 (1994), 67–69 | MR | Zbl

[35] E. A. Kudryavtseva, “Generalization of geometric Poincaré theorem for small perturbations”, Regul. Chaotic Dyn., 3:2 (1998), 46–66 | DOI | MR | Zbl

[36] D. Bambusi, G. Gaeta, “On persistence of invariant tori and a theorem by Nekhoroshev”, Math. Phys. Electron. J., 8 Paper 1 (2002) | MR | Zbl

[37] G. Gaeta, “The Poincaré–Lyapounov–Nekhoroshev theorem”, Ann. Physics, 297:1 (2002), 157–173 | DOI | MR | Zbl

[38] G. Gaeta, “Poincaré–Nekhoroshev map”, J. Nonlinear Math. Phys., 10:1 (2003), 51–64 | DOI | MR | Zbl

[39] D. Bambusi, D. Vella, “Quasiperiodic breathers in Hamiltonian lattices with symmetries”, Discrete Contin. Dyn. Syst. Ser. B, 2:3 (2002), 389–399 | DOI | MR | Zbl