Fractional monodromy in the case of arbitrary
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 383-424

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of fractional monodromy is proved for the compact Lagrangian fibration on a symplectic 4-manifold that corresponds to two oscillators with arbitrary non-trivial resonant frequencies. Here one means by the monodromy corresponding to a loop in the total space of the fibration the transformation of the fundamental group of a regular fibre, which is diffeomorphic to the 2-torus. In the example under consideration the fibration is defined by a pair of functions in involution, one of which is the Hamiltonian of the system of two oscillators with frequency ratio $m_1:(-m_2)$, where $m_1$, $m_2$ are arbitrary coprime positive integers distinct from the trivial pair $m_1=m_2=1$. This is a generalization of the result on the existence of fractional monodromy in the case $m_1=1$, $m_2=2$ published before. Bibliography: 39 titles.
@article{SM_2007_198_3_a3,
     author = {N. N. Nekhoroshev},
     title = {Fractional monodromy in the case of arbitrary},
     journal = {Sbornik. Mathematics},
     pages = {383--424},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/}
}
TY  - JOUR
AU  - N. N. Nekhoroshev
TI  - Fractional monodromy in the case of arbitrary
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 383
EP  - 424
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/
LA  - en
ID  - SM_2007_198_3_a3
ER  - 
%0 Journal Article
%A N. N. Nekhoroshev
%T Fractional monodromy in the case of arbitrary
%J Sbornik. Mathematics
%D 2007
%P 383-424
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/
%G en
%F SM_2007_198_3_a3
N. N. Nekhoroshev. Fractional monodromy in the case of arbitrary. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 383-424. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/