@article{SM_2007_198_3_a3,
author = {N. N. Nekhoroshev},
title = {Fractional monodromy in the case of arbitrary},
journal = {Sbornik. Mathematics},
pages = {383--424},
year = {2007},
volume = {198},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/}
}
N. N. Nekhoroshev. Fractional monodromy in the case of arbitrary. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 383-424. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a3/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | Zbl
[2] N. N. Nekhoroshev, “Peremennye deistvie-ugol i ikh obobscheniya”, Tr. MMO, 26 (1972), 181–198 | MR | Zbl
[3] J. J. Duistermaat, “On global action-angle coordinates”, Commun. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl
[4] R. H. Cushman, “Geometry of the energy momentum mapping of the spherical pendulum”, CWI Newslett., 1 (1983), 4–18 | MR
[5] R. H. Cushman, J. J. Duistermaat, “Non-Hamiltonian monodromy”, J. Differential Equations, 172:1 (2001), 42–58 | DOI | MR | Zbl
[6] R. H. Cushman, D. A. Sadovskiǐ, “Monodromy in the hydrogen atom in crossed fields”, Phys. D, 142:1–2 (2000), 166–196 | DOI | MR | Zbl
[7] R. H. Cushman, Vũ Ngoc San, “Sign of the monodromy for Liouville integrable systems”, Ann. Henri Poincaré, 3:5 (2002), 883–894 | DOI | MR | Zbl
[8] R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, Birkhäuser, Basel, 1997 | MR | Zbl
[9] L. M. Lerman, Ya. L. Umanskii, Four-dimensional integrable Hamiltonian systems with simple singular points (topological aspects), Transl. Math. Monogr., 176, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[10] V. S. Matveev, “Integriruemye gamiltonovy sistemy s dvumya stepenyami svobody. Topologicheskoe stroenie nasyschennykh okrestnostei tochek tipa fokus-fokus i sedlo-sedlo”, Matem. sb., 187:4 (1996), 29–58 | MR | Zbl
[11] Nguyen Tien Zung, “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl
[12] Nguyen Tien Zung, “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl
[13] R. H. Cushman, J. J. Duistermaat, “The quantum mechanical spherical pendulum”, Bull. Amer. Math. Soc, 19:2 (1988), 475–479 | DOI | MR | Zbl
[14] Vũ Ngoc San, “Quantum monodromy in integrable systems”, Comm. Math. Phys., 203:2 (1999), 465–479 | DOI | MR | Zbl
[15] G. Dhont, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, V. Boudon, “Analysis of the “Unusual” vibrational components of triply degenerate vibrational mode $\nu_6$ of Mo(CO)$_6$ based on the classical interpretation of the effective rotation-vibration Hamiltonian”, J. Molecular Spectroscopy, 201 (2000), 95–108 | DOI
[16] F. Faure, B. I. Zhilinskiǐ, “Topological Chern indices in molecular spectra”, Phys. Rev. Lett., 85:5 (2000), 960–963 | DOI
[17] F. Faure, B. I. Zhilinskiǐ, “Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum”, Lett. Math. Phys., 55:3 (2001), 219–238 | DOI | MR | Zbl
[18] A. Giacobbe, R. H. Cushman, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Monodromy of the quantum $1:1:2$ resonant swing spring”, J. Math. Phys., 45:12 (2004), 5076–5100 | DOI | MR | Zbl
[19] L. Grondin, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Monodromy as topological obstruction to global action-angle variables in system with coupled angular momenta and rearrangement of bands in quantum spectra”, Phys. Rev. A, 65:1 (2002), 012105 | DOI
[20] D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Qualitative analysis of vibration-rotation Hamiltonians for spherical top molecules”, Molecular Phys., 65:1 (1988), 109–128 | DOI
[21] D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Monodromy, diabolic points, and angular momentum coupling”, Phys. Lett. A, 256:4 (1999), 235–244 | DOI | MR | Zbl
[22] B. I. Zhilinskiǐ, “Symmetry, invariants, and topology in molecular models”, Phys. Rep., 341:1–6 (2001), 85–171 | DOI | MR | Zbl
[23] B. I. Zhilinskiǐ, S. Brodersen, “The symmetry of the vibrational components in $T_d$ molecules”, J. Molecular Spectroscopy, 163:2 (1994), 326–338 | DOI
[24] I. N. Kozin, R. M. Roberts, “Monodromy in the spectrum of a rigid symmetric top molecule in an electric fields”, J. Chem. Phys, 118:23 (2003), 10523–10533 | DOI
[25] N. N. Nekhoroshev, D. A. Sadovskiǐ, B. I. Zhilinskiǐ, “Fractional Hamiltonian monodromy”, Ann. Henri Poincaré, 7:6 (2006), 1099–1211 | DOI | MR | Zbl
[26] N. N. Nekhoroshev, D. A. Sadovskii, B. I. Zhilinskii, “Fractional monodromy of resonant classical and quantum oscillators”, C. R. Math. Acad. Sci. Paris, 335:11 (2002), 985–988 | DOI | MR | Zbl
[27] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I: The classification of critical points, caustics and wave fronts, Monogr. Math., 82, Birkhäuser, Boston, 1985 | MR | Zbl | MR | Zbl
[28] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 ; A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, Gordon and Breach, Luxembourg, 1995 | MR | Zbl | MR | Zbl
[29] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl
[30] Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities”, Compos. Math., 101:2 (1996), 179–215 | MR | Zbl
[31] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy: geometriya, topologiya, klassifikatsiya, Udmurtskii un-t, Izhevsk, 1999 ; A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl | MR | Zbl
[32] N. N. Nekhoroshev, “Tipy integriruemosti na podmnogoobrazii i obobscheniya teoremy Gordona”, Tr. MMO, 66 (2005), 184–262 | MR
[33] N. N. Nekhoroshev, “Generalizations of Gordon theorem”, Regul. Chaotic Dyn., 7:3 (2002), 239–247 | DOI | MR | Zbl
[34] N. N. Nekhoroshev, “Teorema Puankare–Lyapunova–Liuvillya–Arnolda”, Funkts. analiz i ego pril., 28:2 (1994), 67–69 | MR | Zbl
[35] E. A. Kudryavtseva, “Generalization of geometric Poincaré theorem for small perturbations”, Regul. Chaotic Dyn., 3:2 (1998), 46–66 | DOI | MR | Zbl
[36] D. Bambusi, G. Gaeta, “On persistence of invariant tori and a theorem by Nekhoroshev”, Math. Phys. Electron. J., 8 Paper 1 (2002) | MR | Zbl
[37] G. Gaeta, “The Poincaré–Lyapounov–Nekhoroshev theorem”, Ann. Physics, 297:1 (2002), 157–173 | DOI | MR | Zbl
[38] G. Gaeta, “Poincaré–Nekhoroshev map”, J. Nonlinear Math. Phys., 10:1 (2003), 51–64 | DOI | MR | Zbl
[39] D. Bambusi, D. Vella, “Quasiperiodic breathers in Hamiltonian lattices with symmetries”, Discrete Contin. Dyn. Syst. Ser. B, 2:3 (2002), 389–399 | DOI | MR | Zbl