The problem of birth of autowaves in parabolic
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1599-1636
Voir la notice de l'article provenant de la source Math-Net.Ru
A parabolic reaction-diffusion system with zero Neumann boundary conditions at the end-points of a finite interval is considered under the following basic assumptions. First, the matrix diffusion coefficient in the system is proportional to a small parameter $\varepsilon>0$, and the system itself possesses a spatially homogeneous cycle (independent of the space variable) of amplitude of order $\sqrt\varepsilon$ born by a zero equilibrium at an Andronov–Hopf bifurcation. Second, it is assumed that the matrix diffusion depends on an additional small parameter $\mu\geqslant0$, and for $\mu=0$ there occurs in the stability problem for the homogeneous cycle the critical case of characteristic multiplier 1 of multiplicity 2 without Jordan block. Under these constraints and for independently varied parameters $\varepsilon$ and $\mu$ the problem of the existence and the stability of spatially inhomogeneous auto-oscillations branching from the homogeneous cycle is analysed.
Bibliography: 16 titles.
@article{SM_2007_198_11_a3,
author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii},
title = {The problem of birth of autowaves in parabolic},
journal = {Sbornik. Mathematics},
pages = {1599--1636},
publisher = {mathdoc},
volume = {198},
number = {11},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a3/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov AU - V. A. Sadovnichii TI - The problem of birth of autowaves in parabolic JO - Sbornik. Mathematics PY - 2007 SP - 1599 EP - 1636 VL - 198 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2007_198_11_a3/ LA - en ID - SM_2007_198_11_a3 ER -
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. The problem of birth of autowaves in parabolic. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1599-1636. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a3/