Indices of 1-forms, intersection indices, and Newton polyhedra
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1085-1108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intersection indices of a certain kind of analytic set (resultant cycles) are expressed in terms of the Newton polyhedra of the corresponding defining systems of functions, provided that the principal parts of the functions are in general position. Among special cases of resultant cycles are complete intersections and the loci of matrix rank drop. Among special cases of the intersection indices of such sets are the index of a singularity of a Poincaré–Hopf vector field and its generalizations to the case of singular varieties, the index of a system of germs of 1-forms at an isolated singularity of a Guseǐn-Zade–Ebeling complete intersection, and the Suwa residue of a system of germs of sections of a vector bundle. One also obtains as a consequence the well-known Kushnirenko–Oka formula for the Milnor number of the germ of a map in terms of the Newton polyhedra of its components. A generalization of the well-known equality of the above-mentioned invariants of singularities to the dimensions of certain local rings is also presented. Bibliography: 17 titles.
@article{SM_2006_197_7_a5,
     author = {A. I. \`Esterov},
     title = {Indices of 1-forms, intersection indices, and {Newton} polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {1085--1108},
     year = {2006},
     volume = {197},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a5/}
}
TY  - JOUR
AU  - A. I. Èsterov
TI  - Indices of 1-forms, intersection indices, and Newton polyhedra
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1085
EP  - 1108
VL  - 197
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_7_a5/
LA  - en
ID  - SM_2006_197_7_a5
ER  - 
%0 Journal Article
%A A. I. Èsterov
%T Indices of 1-forms, intersection indices, and Newton polyhedra
%J Sbornik. Mathematics
%D 2006
%P 1085-1108
%V 197
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2006_197_7_a5/
%G en
%F SM_2006_197_7_a5
A. I. Èsterov. Indices of 1-forms, intersection indices, and Newton polyhedra. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1085-1108. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a5/

[1] W. Ebeling, S. M. Gusein-Zade, “Indices of 1-forms on an isolated complete intersection singularity”, Moscow Math. J., 3:2 (2003), 439–455 | MR | Zbl

[2] W. Ebeling, S. M. Gusein-Zade, “Indices of vector fields or 1-forms and characteristic numbers”, Bull. London Math. Soc., 37:5 (2005), 747–754 | DOI | MR | Zbl

[3] T. Suwa, “Residues of Chern classes on singular varieties”, Franco-Japanese singularities (CIRM, Marseille–Luminy, France, September 9–13, 2002), Sémin. Congr., 10, Soc. Math. France, Paris, 2005, 265–285 | MR | Zbl

[4] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR | Zbl

[5] A. N. Varchenko, “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37:3 (1976), 253–262 | DOI | MR | Zbl

[6] M. Oka, “Principal zeta-function of non-degenerate complete intersection singularity”, J. Fac. Sci. Univ. Tokyo, 37:1 (1990), 11–32 | MR | Zbl

[7] V. P. Palamodov, “O kratnosti golomorfnogo otobrazheniya”, Funkts. analiz i ego prilozh., 1:3 (1967), 54–65 | MR | Zbl

[8] D. T. Le, “Vychislenie chisla Milnora izolirovannoi osobennosti polnogo peresecheniya”, Funkts. analiz i ego prilozh., 8:2 (1974), 45–49 | MR | Zbl

[9] G.-M. Greuel, “Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214:3 (1975), 235–266 | DOI | MR | Zbl

[10] U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | MR | Zbl

[11] A. G. Khovanskii, “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego prilozh., 12:1 (1978), 51–61 | MR | Zbl

[12] A. G. Khovanskii, “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego prilozh., 11:4 (1977), 56–64 | MR | Zbl

[13] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[14] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego prilozh., 9:3 (1975), 1–4 | MR | Zbl

[15] W. Ebeling, S. M. Gusein-Zade, J. Seade, Homological index for 1-forms and a Milnor number for isolated singularities, arXiv: math.AG/0307239 | MR

[16] M. Hochster, “Grassmanians and their Schubert subvarieties are arithmetically Cohen–Macaulay”, J. Algebra, 25:1 (1973), 40–57 | DOI | MR | Zbl

[17] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, t. II, Nauka, M., 1984 | MR | Zbl