Direct and inverse theorems on approximation by root
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1037-1083 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One considers the spectral problem $x^{(n)}+Fx=\lambda x$ with boundary conditions $U_j(x)=0$, $j=1,\dots,n$, for functions $x$ on $[0,1]$. It is assumed that $F$ is a linear bounded operator from the Hölder space $C^\gamma$, $\gamma\in[0,n-1)$, into $L_1$ and the $U_j$ are bounded linear functionals on $C^{k_j}$ with $k_j\in\{0,\dots,n-1\}$. Let $\mathfrak P_\zeta$ be the linear span of the root functions of the problem $x^{(n)}+Fx=\lambda x$, $U_j(x)=0$, $j=1,\dots,n$, corresponding to the eigenvalues $\lambda_k$ with $|\lambda_k|<\zeta^n$, and let $\mathscr E_\zeta(f)_{W_p^l}:=\inf\bigl\{\|f-g\|_{W_p^l}:g\in\mathfrak P_\zeta\bigr\}$. An estimate of $\mathscr E_\zeta(f)_{W_p^l}$ is obtained in terms of the $K$-functional $K(\zeta^{-m},f;W_p^l,W_{p,U}^{l+m}) :=\inf\bigl\{\|f-x\|_{W_p^l} +\zeta^{-m}\|x\|_{W_p^{l+m}}: x\in W_p^{l+m},\ U_j(x)=0\text{ for }k_j (the direct theorem) and an estimate of this $K$-functional is obtained in terms of $\mathscr E_\xi(f)_{W_p^l}$ for $\xi\leqslant\zeta$ (the inverse theorem). In several cases two-sided bounds of the $K$-functional are found in terms of appropriate moduli of continuity, and then the direct and the inverse theorems are stated in terms of moduli of continuity. For the spectral problem $x^{(n)}=\lambda x$ with periodic boundary conditions these results coincide with Jackson's and Bernstein's direct and inverse theorems on the approximation of functions by a trigonometric system. Bibliography: 41 titles.
@article{SM_2006_197_7_a4,
     author = {G. V. Radzievskii},
     title = {Direct and inverse theorems on approximation by root},
     journal = {Sbornik. Mathematics},
     pages = {1037--1083},
     year = {2006},
     volume = {197},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - Direct and inverse theorems on approximation by root
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1037
EP  - 1083
VL  - 197
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/
LA  - en
ID  - SM_2006_197_7_a4
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T Direct and inverse theorems on approximation by root
%J Sbornik. Mathematics
%D 2006
%P 1037-1083
%V 197
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/
%G en
%F SM_2006_197_7_a4
G. V. Radzievskii. Direct and inverse theorems on approximation by root. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1037-1083. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/

[1] A. M. Krall, “The development of general differential and general differential-boundary systems”, Rocky Mountain J. Math., 5:4 (1975), 493–542 | MR | Zbl

[2] N. Danford, Dzh. T. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | MR | Zbl

[3] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, Fizmatlit, M., 1969 | MR | Zbl

[4] G. V. Radzievskii, “Zadacha o polnote kornevykh vektorov v spektralnoi teorii operator-funktsii”, UMN, 37:2 (1982), 81–145 | MR | Zbl

[5] G. V. Radzievskii, “Asimptotika sobstvennykh znachenii regulyarnoi kraevoi zadachi”, Ukr. matem. zhurn., 48:4 (1996), 483–519 | MR | Zbl

[6] G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR | Zbl

[7] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, Fizmatlit, M., 1976 | MR | Zbl

[8] S. Salaff, “Regular boundary conditions for ordinary differential operators”, Trans. Amer. Math. Soc., 134:2 (1968), 355–373 | DOI | MR | Zbl

[9] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. MGU. Ser. 1. Matem., mekh., 1982, no. 6, 12–21 | MR | Zbl

[10] R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] G. V. Radzievskii, “Pryamye i obratnye teoremy v zadachakh o priblizhenii po vektoram konechnoi stepeni”, Matem. sb., 189:4 (1998), 83–124 | MR | Zbl

[12] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Trudy MMO, 5, 1956, 483–522 | MR | Zbl

[13] Bl. Sendov, “Modifitsirovannaya funktsiya Steklova”, Dokl. AN Bolgarii, 36:3 (1983), 315–317 | MR | Zbl

[14] G. V. Radzievskii, “Moduli nepreryvnosti, opredelennye po nulevomu prodolzheniyu funktsii, i $K$-funktsionaly s ogranicheniyami”, Ukr. matem. zhurn., 48:11 (1996), 1537–1554 | MR | Zbl

[15] E. I. Radzievskaya, G. V. Radzievskii, “Otsenka $K$-funktsionala vysokogo poryadka cherez $K$-funktsional menshego poryadka”, Ukr. matem. zhurn., 55:11 (2003), 1530–1540 | MR | Zbl

[16] A. M. Gomilko, G. V. Radzievskii, “Bazisnye svoistva sobstvennykh funktsii regulyarnoi kraevoi zadachi dlya vektornogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 27:3 (1991), 384–396 | MR | Zbl

[17] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | MR | Zbl

[18] G. V. Radzievskii, “O nailuchshikh priblizheniyakh i o skorosti skhodimosti razlozhenii po kornevym vektoram operatora”, Ukr. matem. zhurn., 49:6 (1997), 754–773 | MR | Zbl

[19] G. V. Radzievskii, “O normakh proektorov F. Rissa na podprostranstva kornevykh funktsii kraevoi zadachi dlya funktsionalno-differentsialnogo vyrazheniya”, Differents. uravneniya, 42:1 (2006), 48–60 | MR | Zbl

[20] D. Jackson, “On the degree of convergence of Sturm–Liouville series”, Trans. Amer. Math. Soc., 15:4 (1914), 439–466 | DOI | MR | Zbl

[21] F. J. Kaufmann, W. J. Luther, “Degree of convergence of Birkhoff series, direct and inverse theorems”, J. Math. Anal. Appl., 187:1 (1994), 156–168 | DOI | MR | Zbl

[22] H. E. Benzinger, “The $L^p$ behavior of eigenfunction expansions”, Trans. Amer. Math. Soc., 174 (1972), 333–344 | DOI | MR | Zbl

[23] A. M. Minkin, “Equiconvergence theorems for differential operators”, J. Math. Sci. (New York), 96:6 (1999), 3631–3715 | DOI | MR | Zbl

[24] V. A. Il'in, L. V. Kritskov, “Properties of spectral expansions corresponding to non-self-adjoint differential operators”, J. Math. Sci. (New York), 116:5 (2003), 3489–3550 | DOI | MR | Zbl

[25] A. P. Khromov, “Konechnomernye vozmuscheniya volterrovykh operatorov”, Sovr. matem. Fundam. napravleniya, 10 (2004), 3–163 | MR | Zbl

[26] W. E. Milne, “On the degree of convergence of Birkhoff's series”, Trans. Amer. Math. Soc., 19:2 (1918), 143–156 | DOI | MR | Zbl

[27] W. H. McEwen, “On the degree of convergence of the derived series of Birkhoff”, Amer. J. Math., 63:1 (1941), 29–38 | DOI | MR | Zbl

[28] R. Bojanić, Z. Divis, “An estimate for the rate of convergence of the eigenfunction expansions of functions of bounded variation”, Appl. Anal., 17:3 (1984), 227–242 | DOI | MR | Zbl

[29] Z. Divis, “A note on the rate of convergence of Sturm–Liouville expansions”, J. Approx. Theory, 50:3 (1987), 200–207 | DOI | MR | Zbl

[30] G. Radzievskii, “The rate of convergence of decompositions of ordinary functional-differential operators by eigenfunctions”, Some problems of the modern theory of differential equations, Preprint, Nat. Acad. Sci. Ukr. Inst. Math. 94.29, Kiev, 1994, 14–27 | MR | Zbl

[31] G. V. Radzievskii, “Kraevye zadachi i svyazannye s nimi moduli nepreryvnosti”, Funkts. analiz i ego prilozh., 29:3 (1995), 87–90 | MR | Zbl

[32] G. V. Radzievskii, “Pryamye i obratnye teoremy dlya naimenshikh uklonenii ot kornevykh funktsii regulyarnoi kraevoi zadachi”, Dokl. RAN, 400:2 (2005), 157–161 | MR

[33] A. Minkin, “Odd and even cases of Birkhoff-regularity”, Math. Nachr., 174 (1995), 219–230 | DOI | MR | Zbl

[34] G. V. Radzievskii, “Asimptotika po parametru fundamentalnoi sistemy reshenii lineinogo funktsionalno-differentsialnogo uravneniya”, Ukr. matem. zhurn., 47:6 (1995), 811–836 | MR | Zbl

[35] A. Zigmund, Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR | MR | Zbl

[36] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., L., 1950 | MR | Zbl

[37] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | MR | Zbl

[38] P. L. Butzer, R. J. Nessel, Fourier analysis and approximation, Pure Appl. Math., 40, Acad. Press, New York, 1971 | MR | Zbl

[39] M. H. Stone, “A comparison of the series of Fourier and Birkhoff”, Trans. Amer. Math. Soc., 28:4 (1926), 695–761 | DOI | MR | Zbl

[40] M. H. Stone, “Irregular differential systems of order two and the related expansion problems”, Trans. Amer. Math. Soc., 29:1 (1927), 23–53 | DOI | MR | Zbl

[41] A. Minkin, L. Shuster, “Estimates of eigenfunctions for one class of boundary conditions”, Bull. London Math. Soc., 29:4 (1997), 459–469 | DOI | MR | Zbl