Direct and inverse theorems on approximation by root
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1037-1083

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers the spectral problem $x^{(n)}+Fx=\lambda x$ with boundary conditions $U_j(x)=0$, $j=1,\dots,n$, for functions $x$ on $[0,1]$. It is assumed that $F$ is a linear bounded operator from the Hölder space $C^\gamma$, $\gamma\in[0,n-1)$, into $L_1$ and the $U_j$ are bounded linear functionals on $C^{k_j}$ with $k_j\in\{0,\dots,n-1\}$. Let $\mathfrak P_\zeta$ be the linear span of the root functions of the problem $x^{(n)}+Fx=\lambda x$, $U_j(x)=0$, $j=1,\dots,n$, corresponding to the eigenvalues $\lambda_k$ with $|\lambda_k|\zeta^n$, and let $\mathscr E_\zeta(f)_{W_p^l}:=\inf\bigl\{\|f-g\|_{W_p^l}:g\in\mathfrak P_\zeta\bigr\}$. An estimate of $\mathscr E_\zeta(f)_{W_p^l}$ is obtained in terms of the $K$-functional $K(\zeta^{-m},f;W_p^l,W_{p,U}^{l+m}) :=\inf\bigl\{\|f-x\|_{W_p^l} +\zeta^{-m}\|x\|_{W_p^{l+m}}: x\in W_p^{l+m},\ U_j(x)=0\text{ for }k_j$ (the direct theorem) and an estimate of this $K$-functional is obtained in terms of $\mathscr E_\xi(f)_{W_p^l}$ for $\xi\leqslant\zeta$ (the inverse theorem). In several cases two-sided bounds of the $K$-functional are found in terms of appropriate moduli of continuity, and then the direct and the inverse theorems are stated in terms of moduli of continuity. For the spectral problem $x^{(n)}=\lambda x$ with periodic boundary conditions these results coincide with Jackson's and Bernstein's direct and inverse theorems on the approximation of functions by a trigonometric system. Bibliography: 41 titles.
@article{SM_2006_197_7_a4,
     author = {G. V. Radzievskii},
     title = {Direct and inverse theorems on approximation by root},
     journal = {Sbornik. Mathematics},
     pages = {1037--1083},
     publisher = {mathdoc},
     volume = {197},
     number = {7},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - Direct and inverse theorems on approximation by root
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1037
EP  - 1083
VL  - 197
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/
LA  - en
ID  - SM_2006_197_7_a4
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T Direct and inverse theorems on approximation by root
%J Sbornik. Mathematics
%D 2006
%P 1037-1083
%V 197
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/
%G en
%F SM_2006_197_7_a4
G. V. Radzievskii. Direct and inverse theorems on approximation by root. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1037-1083. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a4/