Variational principles for the spectral radius
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 633-680

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional $T$ defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional $T$ by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional $T$ and the spectral radius are presented. Bibliography: 28 titles.
@article{SM_2006_197_5_a0,
     author = {A. B. Antonevich and K. Zajkowski},
     title = {Variational principles for the spectral radius},
     journal = {Sbornik. Mathematics},
     pages = {633--680},
     publisher = {mathdoc},
     volume = {197},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - K. Zajkowski
TI  - Variational principles for the spectral radius
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 633
EP  - 680
VL  - 197
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_5_a0/
LA  - en
ID  - SM_2006_197_5_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A K. Zajkowski
%T Variational principles for the spectral radius
%J Sbornik. Mathematics
%D 2006
%P 633-680
%V 197
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_5_a0/
%G en
%F SM_2006_197_5_a0
A. B. Antonevich; K. Zajkowski. Variational principles for the spectral radius. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 633-680. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a0/