Variational principles for the spectral radius
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 633-680
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The spectral radius of a functional operator with positive
coefficients generated by a set of maps (a dynamical system) is shown to be
a logarithmically convex functional of the logarithms of
the coefficients. This yields  the following  variational principle: the logarithm of the
spectral radius is the Legendre transform of a convex functional $T$ defined
on a set of  vector-valued probability measures and depending only on
the original dynamical system.
A combinatorial construction of the functional $T$
by means of the  random walk process
corresponding to the dynamical system is presented   in the
subexponential case. Examples
of the explicit calculation of the functional $T$ and the spectral radius
are presented.
Bibliography: 28 titles.
			
            
            
            
          
        
      @article{SM_2006_197_5_a0,
     author = {A. B. Antonevich and K. Zajkowski},
     title = {Variational principles for the spectral radius},
     journal = {Sbornik. Mathematics},
     pages = {633--680},
     publisher = {mathdoc},
     volume = {197},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a0/}
}
                      
                      
                    A. B. Antonevich; K. Zajkowski. Variational principles for the spectral radius. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 633-680. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a0/
