Minkowski sum of a parallelotope and a segment
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1417-1433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Not every parallelotope $P$ is such that the Minkowski sum $P+S_e$ of $P$ with a segment $S_e$ of the straight line along a vector $e$ is a parallelotope. If $P+S_e$ is a parallelotope, then $P$ is said to be free along $e$. The parallelotope $P+S_e$ is not always a Voronoĭ polytope. The well-known Voronoĭ conjecture states that every parallelotope is affinely equivalent to a Voronoĭ polytope. An attempt is made to prove Voronoĭ's conjecture for $P+S_e$. For that a class $\mathscr P(e)$ of canonically defined parallelotopes that are free along $e$ is introduced. It is proved that $P+S_e$ is affinely equivalent to a Voronoĭ polytope if and only if $P$ is a direct sum of parallelotopes of class $\mathscr P(e)$. This simple case of the proof of Voronoĭ's conjecture is an instructive example for understanding the general case. Bibliography: 10 titles.
@article{SM_2006_197_10_a1,
     author = {V. P. Grishukhin},
     title = {Minkowski sum of a parallelotope and a segment},
     journal = {Sbornik. Mathematics},
     pages = {1417--1433},
     year = {2006},
     volume = {197},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Minkowski sum of a parallelotope and a segment
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1417
EP  - 1433
VL  - 197
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/
LA  - en
ID  - SM_2006_197_10_a1
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Minkowski sum of a parallelotope and a segment
%J Sbornik. Mathematics
%D 2006
%P 1417-1433
%V 197
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/
%G en
%F SM_2006_197_10_a1
V. P. Grishukhin. Minkowski sum of a parallelotope and a segment. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1417-1433. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/

[1] O. K. Zhitomirskii, “Verschärfung eines Satzes von Voronoi”, Zhurn. LMO, 2 (1929), 131–151

[2] G. F. Voronoi, “Nouvelles applications des paramètres continus à la théorie de formes quadratiques – Deuxième mémoire”, J. Reine Angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–178 | Zbl | Zbl

[3] B. A. Venkov, “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. LGU. Ser. matem., mekh., astron., 9:2 (1954), 11–31 | MR

[4] B. A. Venkov, “O proektirovanii paralleloedrov”, Matem. sb., 49(91):2 (1959), 207–224 | Zbl

[5] L. Michel, S. S. Ryshkov, M. Senechal, “An extension of Voronoi's theorem on primitive parallelotopes”, European J. Combin., 16:1 (1995), 59–63 | DOI | MR | Zbl

[6] M. Deza, V. Grishukhin, “Properties of parallelotopes equivalent to Voronoi's conjecture”, European J. Combin., 25:4 (2004), 517–533 | DOI | MR | Zbl

[7] E. A. Bolshakova, “DV-razbienie i L-razbienie po G. F. Voronomu, B. N. Delone i B. A. Venkovu”, Chebyshevsk. sb., 5:2(10) (2004), 30–41 | MR

[8] S. S. Ryshkov, E. P. Baranovskii, $C$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii), Tr. MIAN, 137, Nauka, M., 1976 | MR | Zbl

[9] S. S. Ryshkov, E. A. Bolshakova, “K teorii korennykh paralleloedrov”, Izv. RAN. Ser. matem., 69:6 (2005), 187–210 | MR | Zbl

[10] V. P. Grishukhin, “Paralleloedry nenulevoi tolschiny”, Matem. sb., 195:5 (2004), 59–78 | MR | Zbl