Minkowski sum of a parallelotope and a segment
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1417-1433

Voir la notice de l'article provenant de la source Math-Net.Ru

Not every parallelotope $P$ is such that the Minkowski sum $P+S_e$ of $P$ with a segment $S_e$ of the straight line along a vector $e$ is a parallelotope. If $P+S_e$ is a parallelotope, then $P$ is said to be free along $e$. The parallelotope $P+S_e$ is not always a Voronoĭ polytope. The well-known Voronoĭ conjecture states that every parallelotope is affinely equivalent to a Voronoĭ polytope. An attempt is made to prove Voronoĭ's conjecture for $P+S_e$. For that a class $\mathscr P(e)$ of canonically defined parallelotopes that are free along $e$ is introduced. It is proved that $P+S_e$ is affinely equivalent to a Voronoĭ polytope if and only if $P$ is a direct sum of parallelotopes of class $\mathscr P(e)$. This simple case of the proof of Voronoĭ's conjecture is an instructive example for understanding the general case. Bibliography: 10 titles.
@article{SM_2006_197_10_a1,
     author = {V. P. Grishukhin},
     title = {Minkowski sum of a  parallelotope and a segment},
     journal = {Sbornik. Mathematics},
     pages = {1417--1433},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Minkowski sum of a  parallelotope and a segment
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1417
EP  - 1433
VL  - 197
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/
LA  - en
ID  - SM_2006_197_10_a1
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Minkowski sum of a  parallelotope and a segment
%J Sbornik. Mathematics
%D 2006
%P 1417-1433
%V 197
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/
%G en
%F SM_2006_197_10_a1
V. P. Grishukhin. Minkowski sum of a  parallelotope and a segment. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1417-1433. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a1/