Newton's problem of the body of minimum mean resistance
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1017-1037 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider a body $\Omega$ at rest in $d$-dimensional Euclidean space and a homogeneous flow of particles falling on it with unit velocity $v$. The particles do not interact and they collide with the body perfectly elastically. Let $\mathscr R_\Omega(v)$ be the resistance of the body to the flow. The problem of the body of minimum resistance, which goes back to Newton, consists in the minimization of the quantity $(\mathscr R_\Omega(v)\mid v)$ over a prescribed class of bodies. Assume that one does not know in advance the direction $v$ of the flow or that one measures the resistance repeatedly for various directions of $v$. Of interest in these cases is the problem of the minimization of the mean value of the resistance $\widetilde{\mathscr R}(\Omega) =\displaystyle\int_{S^{d-1}}(\mathscr R_\Omega(v)\mid v)\,dv$. This problem is considered $(\widetilde{\mathrm{P}}_d)$ in the class of bodies of volume 1 and $(\widetilde{\mathrm{P}}{}_d^c)$ in the class of convex bodies of volume 1. The solution of the convex problem $\widetilde{\mathrm{P}}{}_d^c$ is the $d$-dimensional ball. For the non-convex 2-dimensional problem $\widetilde{\mathrm{P}}_2$ the minimum value $\widetilde{\mathscr R}(\Omega)$ is found with accuracy $0.61\%$. The proof of this estimate is carried out with the use of a result related to the Monge problem of mass transfer, which is also solved in this paper. This problem is as follows: find $\displaystyle\inf_{T\in\mathscr T}\int_\Pi\mathrm{f}(\varphi,\tau;T(\varphi,\tau))\,d\mu(\varphi,\tau)$, where $\Pi=[-{\pi}/{2},{\pi}/{2}]\times [0,1]$, $d\mu(\varphi,\tau)=\cos\varphi\,d\varphi\,d\tau$, $\mathrm{f}(\varphi,\tau;\varphi',\tau') =1+\cos(\varphi+\varphi')$, and $\mathscr T$ is the set of one-to-one maps of $\Pi$ onto itself preserving the measure $\mu$. Another problem under study is the minimization of $\overline{\mathscr R}(\Omega) =\displaystyle\int_{S^{d-1}}|\mathscr R_\Omega(v)|\,dv$. The solution of the convex problem $\overline{\mathrm P}{}_d^c$ and the estimate for the non-convex 2-dimensional problem $\overline{\mathrm P}_2$ obtained in this paper are the same as for the problems $\widetilde{\mathrm P}{}_d^c$ and $\widetilde{\mathrm P}_2$.
@article{SM_2004_195_7_a4,
     author = {A. Yu. Plakhov},
     title = {Newton's problem of the body of minimum mean resistance},
     journal = {Sbornik. Mathematics},
     pages = {1017--1037},
     year = {2004},
     volume = {195},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a4/}
}
TY  - JOUR
AU  - A. Yu. Plakhov
TI  - Newton's problem of the body of minimum mean resistance
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1017
EP  - 1037
VL  - 195
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_7_a4/
LA  - en
ID  - SM_2004_195_7_a4
ER  - 
%0 Journal Article
%A A. Yu. Plakhov
%T Newton's problem of the body of minimum mean resistance
%J Sbornik. Mathematics
%D 2004
%P 1017-1037
%V 195
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2004_195_7_a4/
%G en
%F SM_2004_195_7_a4
A. Yu. Plakhov. Newton's problem of the body of minimum mean resistance. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1017-1037. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a4/

[1] Newton I., Philosophiae naturalis principia mathematica, 1686

[2] Belloni M., Wagner A., “Newton's Problem of Minimal Resistance in the Class of Bodies with Prescribed Volume”, J. Convex Anal., 10:2 (2003), 491–500 | MR | Zbl

[3] Buttazzo G., Ferone V., Kawohl B., “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89 | DOI | MR | Zbl

[4] Buttazzo G., Guasoni P., “Shape optimization problems over classes of convex domains”, J. Convex Anal., 4:2 (1997), 343–351 | MR | Zbl

[5] Buttazzo G., Kawohl B., “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12 | DOI | MR | Zbl

[6] Comte M., Lachand-Robert T., “Newton's problem of the body of minimal resistance under a single-impact assumption”, Calc. Var. Partial Differential Equations, 12 (2001), 173–211 | DOI | MR | Zbl

[7] Lachand-Robert T., Peletier M. A., “Newton's problem of the body of minimal resistance in the class of convex developable functions”, Math. Nachr., 226 (2001), 153–176 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Plakhov A. Yu., “K zadache Nyutona o tele naimenshego aerodinamicheskogo soprotivleniya”, Dokl. RAN, 390:3 (2003), 314–317 | MR

[9] Tabachnikov S., Billiards, Société Mathématique de France, Paris, 1995 | MR | Zbl

[10] Monge G., “Memoire sur la theorie des déblais et des remblais”, Histoire de l'Acad. des Sciences de Paris, 1781

[11] Kantorovich L. V., “O peremeschenii mass”, Dokl. AN SSSR, 37:7–8 (1942), 227–229

[12] Evans L. C., “Partial differential equations and Monge–Kantorovich mass transfer”, Current developments in mathematics, eds. R. Bott et al., International Press, Boston, MA, 1999, 65–126 | MR | Zbl

[13] Rachev S. T., “Zadacha Monzha–Kantorovicha o peremeschenii mass i ee primeneniya v stokhastike”, Teoriya veroyatnostei i ee prim., 29:4 (1984), 625–653 | MR | Zbl

[14] McCann R. J., “Exact solutions to the transportation problem on the line”, Proc. Roy. Soc. Lond. Sect. A, 455 (1999), 1341–1380 | DOI | MR | Zbl

[15] Levin V. L., “Optimal solutions of the Monge problem”, Adv. Math. Econ., 6, Springer, Tokyo, 2004, 85–122 | MR | Zbl

[16] Levin V. L., “Reshenie zadach Monzha i Monzha–Kantorovicha. Teoriya i primery”, Dokl. RAN, 388:1 (2003), 7–10 | MR | Zbl

[17] Uckelmann L., “Optimal couplings between one-dimensional distributions”, Distributions with given marginals and moment problems, eds. V. Beneš and J. Štěpán, Kluwer Acad. Publ., Dordrecht, 1997, 275–281 | MR | Zbl