@article{SM_2004_195_7_a4,
author = {A. Yu. Plakhov},
title = {Newton's problem of the body of minimum mean resistance},
journal = {Sbornik. Mathematics},
pages = {1017--1037},
year = {2004},
volume = {195},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a4/}
}
A. Yu. Plakhov. Newton's problem of the body of minimum mean resistance. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1017-1037. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a4/
[1] Newton I., Philosophiae naturalis principia mathematica, 1686
[2] Belloni M., Wagner A., “Newton's Problem of Minimal Resistance in the Class of Bodies with Prescribed Volume”, J. Convex Anal., 10:2 (2003), 491–500 | MR | Zbl
[3] Buttazzo G., Ferone V., Kawohl B., “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89 | DOI | MR | Zbl
[4] Buttazzo G., Guasoni P., “Shape optimization problems over classes of convex domains”, J. Convex Anal., 4:2 (1997), 343–351 | MR | Zbl
[5] Buttazzo G., Kawohl B., “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12 | DOI | MR | Zbl
[6] Comte M., Lachand-Robert T., “Newton's problem of the body of minimal resistance under a single-impact assumption”, Calc. Var. Partial Differential Equations, 12 (2001), 173–211 | DOI | MR | Zbl
[7] Lachand-Robert T., Peletier M. A., “Newton's problem of the body of minimal resistance in the class of convex developable functions”, Math. Nachr., 226 (2001), 153–176 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] Plakhov A. Yu., “K zadache Nyutona o tele naimenshego aerodinamicheskogo soprotivleniya”, Dokl. RAN, 390:3 (2003), 314–317 | MR
[9] Tabachnikov S., Billiards, Société Mathématique de France, Paris, 1995 | MR | Zbl
[10] Monge G., “Memoire sur la theorie des déblais et des remblais”, Histoire de l'Acad. des Sciences de Paris, 1781
[11] Kantorovich L. V., “O peremeschenii mass”, Dokl. AN SSSR, 37:7–8 (1942), 227–229
[12] Evans L. C., “Partial differential equations and Monge–Kantorovich mass transfer”, Current developments in mathematics, eds. R. Bott et al., International Press, Boston, MA, 1999, 65–126 | MR | Zbl
[13] Rachev S. T., “Zadacha Monzha–Kantorovicha o peremeschenii mass i ee primeneniya v stokhastike”, Teoriya veroyatnostei i ee prim., 29:4 (1984), 625–653 | MR | Zbl
[14] McCann R. J., “Exact solutions to the transportation problem on the line”, Proc. Roy. Soc. Lond. Sect. A, 455 (1999), 1341–1380 | DOI | MR | Zbl
[15] Levin V. L., “Optimal solutions of the Monge problem”, Adv. Math. Econ., 6, Springer, Tokyo, 2004, 85–122 | MR | Zbl
[16] Levin V. L., “Reshenie zadach Monzha i Monzha–Kantorovicha. Teoriya i primery”, Dokl. RAN, 388:1 (2003), 7–10 | MR | Zbl
[17] Uckelmann L., “Optimal couplings between one-dimensional distributions”, Distributions with given marginals and moment problems, eds. V. Beneš and J. Štěpán, Kluwer Acad. Publ., Dordrecht, 1997, 275–281 | MR | Zbl