On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$
Sbornik. Mathematics, Tome 195 (2004) no. 3, pp. 347-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of fixed-point subgraphs of automorphisms of order 3 of strongly regular graphs with parameters $(v,k,0, 2)$ is determined. Let $G$ be the automorphism group of a hypothetical strongly regular graph with parameters $(352, 26, 0, 2)$. Possible orders are found and the structure of fixed-point subgraphs is determined for elements of prime order in $G$. The four-subgroups of $G$ are classified and the possible structure of the group $G$ is determined. A strengthening of a result of Nakagawa on the automorphism groups of strongly regular graphs with $\lambda=0$, $\mu=2$ is obtained.
@article{SM_2004_195_3_a2,
     author = {A. A. Makhnev and V. V. Nosov},
     title = {On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$},
     journal = {Sbornik. Mathematics},
     pages = {347--367},
     year = {2004},
     volume = {195},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_3_a2/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. V. Nosov
TI  - On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 347
EP  - 367
VL  - 195
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_3_a2/
LA  - en
ID  - SM_2004_195_3_a2
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. V. Nosov
%T On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$
%J Sbornik. Mathematics
%D 2004
%P 347-367
%V 195
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2004_195_3_a2/
%G en
%F SM_2004_195_3_a2
A. A. Makhnev; V. V. Nosov. On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$. Sbornik. Mathematics, Tome 195 (2004) no. 3, pp. 347-367. http://geodesic.mathdoc.fr/item/SM_2004_195_3_a2/

[1] Makhnev A. A., Paduchikh D. V., “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989 | MR

[3] Makhnev A. A., Minakova I. M., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(99,14,1,2)$”, Mezhdunarodnyi seminar po teorii grupp, Tezisy dokl., Izd-vo Uralskogo un-ta, Ekaterinburg, 2001, 141–142 | MR

[4] Nakagawa N., “On strongly regular graphs with parameters $(k,0,2)$ and their antipodal double cover”, Hokkaido Math. Soc., 30 (2001), 431–450 | MR | Zbl

[5] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, European J. Combin., 14 (1993), 397–407 | DOI | MR | Zbl

[6] Cameron P., Permutation groups, London Math. Soc. Stud. Texts, 45, 1999 | MR | Zbl