An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1809-1822

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a separable compact Hausdorff space $B$ satisfying the first countability axiom of dimension $2=\dim B\operatorname{Dg}B=3\operatorname{ind}B=4=\operatorname{Ind}B$, where $\operatorname{Dg}$ is the inductive dimension invariant introduced by Brouwer in 1913 under the name “Dimensionsgrad”.
@article{SM_2004_195_12_a6,
     author = {V. V. Fedorchuk},
     title = {An example of a~compact {Hausdorff} space whose {Lebesgue,} {Brouwer,} and inductive dimensions are different},
     journal = {Sbornik. Mathematics},
     pages = {1809--1822},
     publisher = {mathdoc},
     volume = {195},
     number = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1809
EP  - 1822
VL  - 195
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/
LA  - en
ID  - SM_2004_195_12_a6
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different
%J Sbornik. Mathematics
%D 2004
%P 1809-1822
%V 195
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/
%G en
%F SM_2004_195_12_a6
V. V. Fedorchuk. An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1809-1822. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/