An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1809-1822
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an example of a separable compact Hausdorff space $B$ satisfying the first countability axiom of dimension $2=\dim B\operatorname{Dg}B=3\operatorname{ind}B=4=\operatorname{Ind}B$, where $\operatorname{Dg}$ is the inductive dimension invariant introduced by Brouwer in 1913 under the name “Dimensionsgrad”.
@article{SM_2004_195_12_a6,
author = {V. V. Fedorchuk},
title = {An example of a~compact {Hausdorff} space whose {Lebesgue,} {Brouwer,} and inductive dimensions are different},
journal = {Sbornik. Mathematics},
pages = {1809--1822},
publisher = {mathdoc},
volume = {195},
number = {12},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/}
}
TY - JOUR AU - V. V. Fedorchuk TI - An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different JO - Sbornik. Mathematics PY - 2004 SP - 1809 EP - 1822 VL - 195 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/ LA - en ID - SM_2004_195_12_a6 ER -
V. V. Fedorchuk. An example of a~compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1809-1822. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a6/