On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 969-978

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a complete Riemannian manifold of dimension $d>1$, let $\mu$ be a measure on $M$ with density $\exp U$ with respect to the Riemannian volume, and let $\mathscr Lf=\Delta f+\langle b,\nabla f\rangle$, where $U\in H^{p,1}_{\mathrm{loc}}(M)$ and $b=\nabla U$. It is shown that in the case $p>d$ and $q\in[p',p]$ the operator $\mathscr L$ on the domain $C_0^\infty(M)$ has a unique extension generating a $C_0$-semigroup on $L^q(M,\mu)$, that is, the set $(\mathscr L-I)(C_0^\infty(M))$ is dense in $L^q(M,\mu)$. In particular, the operator $\mathscr L$ is essentially self-adjoint on $L^2(M,\mu)$. A similar result is proved for elliptic operators with non-constant second order part that are formally symmetric with respect to some measure.
@article{SM_2003_194_7_a1,
     author = {V. I. Bogachev and M. R\"ockner},
     title = {On $L^p$-uniqueness of symmetric diffusion operators on {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {969--978},
     publisher = {mathdoc},
     volume = {194},
     number = {7},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - M. Röckner
TI  - On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 969
EP  - 978
VL  - 194
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/
LA  - en
ID  - SM_2003_194_7_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A M. Röckner
%T On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds
%J Sbornik. Mathematics
%D 2003
%P 969-978
%V 194
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/
%G en
%F SM_2003_194_7_a1
V. I. Bogachev; M. Röckner. On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 969-978. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/