On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 969-978
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $M$ be a complete Riemannian manifold of dimension $d>1$, let $\mu$
be a measure on $M$ with density $\exp U$ with respect to the Riemannian volume, and let
$\mathscr Lf=\Delta f+\langle b,\nabla f\rangle$, where $U\in H^{p,1}_{\mathrm{loc}}(M)$ and $b=\nabla U$. It is shown that in the case $p>d$ and $q\in[p',p]$ the operator $\mathscr L$ on the domain $C_0^\infty(M)$
has a unique extension generating a $C_0$-semigroup on $L^q(M,\mu)$,
that is, the set $(\mathscr L-I)(C_0^\infty(M))$ is dense in $L^q(M,\mu)$.
In particular, the operator $\mathscr L$ is essentially self-adjoint on $L^2(M,\mu)$.
A similar result is proved for elliptic operators with non-constant
second order part that are formally symmetric with respect to some measure.
			
            
            
            
          
        
      @article{SM_2003_194_7_a1,
     author = {V. I. Bogachev and M. R\"ockner},
     title = {On $L^p$-uniqueness of symmetric diffusion operators on {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {969--978},
     publisher = {mathdoc},
     volume = {194},
     number = {7},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/}
}
                      
                      
                    TY - JOUR AU - V. I. Bogachev AU - M. Röckner TI - On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds JO - Sbornik. Mathematics PY - 2003 SP - 969 EP - 978 VL - 194 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/ LA - en ID - SM_2003_194_7_a1 ER -
V. I. Bogachev; M. Röckner. On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 969-978. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a1/
