On absolutely continuous weakly mixing cocycles over irrational rotations
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 775-792 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A weakly mixing cocycle over a rotation $\alpha$ is a measurable function $\varphi\colon S^1\to S^1$, where $S^1=\{z\in\mathbb C:|z|=1\}$, such that the equation \begin{equation} \varphi^n(z)=c\frac{h(\exp(2\pi i\alpha)z)}{h(z)} \quad\text{for almost all \ </nomathmode><mathmode>$z$} \tag{1} \end{equation}</mathmode><nomathmode> has no measurable solutions $h(\,\cdot\,)\colon S^1\to S^1$ for any $n\in\mathbb Z\setminus\{0\}$ and $c\in\mathbb C$, $|c|=1$. If the irrational number $\alpha$ has bounded convergents in its continued fraction expansion and a function $M(y)$ increases more slowly than $y\ln^{1/2}y$, then it is proved that there exists a weakly mixing cocycle of the form $\varphi(\exp(2\pi ix))=\exp(2\pi i\widetilde\varphi(x))$, where $\widetilde\varphi\colon\mathbb T\to\mathbb R$ belongs to the class $W^1(M(L)(\mathbb T))$. In addition, it is shown that equation (1) (and also the corresponding additive cohomological equation) is soluble for $\widetilde\varphi\in W^1(L\log_+^{1/2}L(\mathbb T))$.
@article{SM_2003_194_5_a5,
     author = {A. V. Rozhdestvenskii},
     title = {On absolutely continuous weakly mixing cocycles over irrational rotations},
     journal = {Sbornik. Mathematics},
     pages = {775--792},
     year = {2003},
     volume = {194},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On absolutely continuous weakly mixing cocycles over irrational rotations
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 775
EP  - 792
VL  - 194
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/
LA  - en
ID  - SM_2003_194_5_a5
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On absolutely continuous weakly mixing cocycles over irrational rotations
%J Sbornik. Mathematics
%D 2003
%P 775-792
%V 194
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/
%G en
%F SM_2003_194_5_a5
A. V. Rozhdestvenskii. On absolutely continuous weakly mixing cocycles over irrational rotations. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 775-792. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/

[1] Helson H., “Cocycles on the circle”, J. Operator Theory, 16 (1986), 189–199 | MR | Zbl

[2] Iwanik A., “Generic smooth cocycles of degree zero over irrational rotations”, Studia Math., 115:3 (1995), 241–250 | MR | Zbl

[3] Anzai H., “Ergodic skew product transformations on the torus”, Osaka J. Math., 3 (1951), 83–99 | MR | Zbl

[4] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1999 | Zbl

[5] Gabriel P., Lemanczyk M., Liardet P., Ensemble d'invariants pour les produits croises de Anzai, Mém. Soc. Math. Fr. (N. S.), 47, Soc. Math. France, Marseille, 1991 | Zbl

[6] Iwanik A., Lemanczyk M., Rudolph D., “Absolutely continuous cocycles over irration rotations”, Israel J. Math., 83 (1993), 73–95 | DOI | MR | Zbl

[7] Lemanczyk M., Mauduit C., “Ergodicity of a class of cocycles over irration rotations”, J. London Math. Soc. (2), 49 (1991), 124–132 | MR

[8] Stein E. M., “On limits of sequences of operators”, Ann. of Math., 74 (1961), 140–170 | DOI | MR | Zbl

[9] Pichugov S. A., “Posledovatelnosti ogranichennykh po mere operatorov”, Matem. sb., 185:1 (1994), 43–72 | MR | Zbl

[10] Rozhdestvenskii A. V., “O neravenstvakh Dzheksona i multiplikatorakh v $L_p$”, Matem. zametki, 57:4 (1995), 551–579 | MR | Zbl

[11] Edvards R., Ryady Fure v sovremennom izlozhenii, t. 2, Mir, M., 1985

[12] Zigmund A., Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR

[13] Stechkin S. B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[14] Shmidt V., Diofantovy priblizheniya, Mir, M., 1983 | MR

[15] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR

[16] Zigmund A., Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR

[17] Moore C. C., Schmidt K., “Coboundaries and homomorphism for nonsingular actions and a problem of H. Helson”, Proc. London Math. Soc. (3), 40 (1980), 443–475 | DOI | MR | Zbl

[18] Anosov D. V., “Ob additivnom funktsionalnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1259–1274 | MR | Zbl

[19] Rozhdestvenskii A. V., “K neravenstvu Dzheksona v $L_p(\mathbb T^d)$”, Fundament. i prikl. matem., 1:3 (1995), 753–766 | MR | Zbl

[20] Baggett L., Merrill K., “On the cohomological equivalence of a class of functions under an irrational rotation of bounded type”, Proc. Amer. Math. Soc., 111:3 (1991), 787–793 | DOI | MR | Zbl