On absolutely continuous weakly mixing cocycles  over irrational rotations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 775-792
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A weakly  mixing cocycle over a rotation $\alpha$ is a measurable function $\varphi\colon S^1\to S^1$, where  $S^1=\{z\in\mathbb C:|z|=1\}$,
such that the equation
\begin{equation}
\varphi^n(z)=c\frac{h(\exp(2\pi i\alpha)z)}{h(z)} \quad\text{for almost all \ 
            
            
            
          
        
      @article{SM_2003_194_5_a5,
     author = {A. V. Rozhdestvenskii},
     title = {On absolutely continuous weakly mixing cocycles  over irrational rotations},
     journal = {Sbornik. Mathematics},
     pages = {775--792},
     publisher = {mathdoc},
     volume = {194},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/}
}
                      
                      
                    A. V. Rozhdestvenskii. On absolutely continuous weakly mixing cocycles over irrational rotations. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 775-792. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/
