On absolutely continuous weakly mixing cocycles over irrational rotations
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 775-792

Voir la notice de l'article provenant de la source Math-Net.Ru

A weakly mixing cocycle over a rotation $\alpha$ is a measurable function $\varphi\colon S^1\to S^1$, where $S^1=\{z\in\mathbb C:|z|=1\}$, such that the equation \begin{equation} \varphi^n(z)=c\frac{h(\exp(2\pi i\alpha)z)}{h(z)} \quad\text{for almost all \
@article{SM_2003_194_5_a5,
     author = {A. V. Rozhdestvenskii},
     title = {On absolutely continuous weakly mixing cocycles  over irrational rotations},
     journal = {Sbornik. Mathematics},
     pages = {775--792},
     publisher = {mathdoc},
     volume = {194},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On absolutely continuous weakly mixing cocycles  over irrational rotations
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 775
EP  - 792
VL  - 194
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/
LA  - en
ID  - SM_2003_194_5_a5
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On absolutely continuous weakly mixing cocycles  over irrational rotations
%J Sbornik. Mathematics
%D 2003
%P 775-792
%V 194
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/
%G en
%F SM_2003_194_5_a5
A. V. Rozhdestvenskii. On absolutely continuous weakly mixing cocycles  over irrational rotations. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 775-792. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a5/