The defining boundary conditions and the~degenerate problem for
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 641-668
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For an elliptic equation with a small parameter multiplying the highest
derivatives one considers a boundary-value problem  such that some
of the orders of the last $p$ boundary conditions are congruent modulo $2p$
(here $2p$ is the difference between the orders of the perturbed and the non-perturbed equations). In the case when no three of them are congruent modulo $2p$,
associated boundary conditions are obtained and results on the asymptotic expansion are established.
			
            
            
            
          
        
      @article{SM_2003_194_5_a0,
     author = {S. A. Golopuz},
     title = {The defining boundary conditions and the~degenerate problem for},
     journal = {Sbornik. Mathematics},
     pages = {641--668},
     publisher = {mathdoc},
     volume = {194},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a0/}
}
                      
                      
                    S. A. Golopuz. The defining boundary conditions and the~degenerate problem for. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 641-668. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a0/
