The defining boundary conditions and the~degenerate problem for
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 641-668

Voir la notice de l'article provenant de la source Math-Net.Ru

For an elliptic equation with a small parameter multiplying the highest derivatives one considers a boundary-value problem such that some of the orders of the last $p$ boundary conditions are congruent modulo $2p$ (here $2p$ is the difference between the orders of the perturbed and the non-perturbed equations). In the case when no three of them are congruent modulo $2p$, associated boundary conditions are obtained and results on the asymptotic expansion are established.
@article{SM_2003_194_5_a0,
     author = {S. A. Golopuz},
     title = {The defining boundary conditions and the~degenerate problem for},
     journal = {Sbornik. Mathematics},
     pages = {641--668},
     publisher = {mathdoc},
     volume = {194},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a0/}
}
TY  - JOUR
AU  - S. A. Golopuz
TI  - The defining boundary conditions and the~degenerate problem for
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 641
EP  - 668
VL  - 194
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a0/
LA  - en
ID  - SM_2003_194_5_a0
ER  - 
%0 Journal Article
%A S. A. Golopuz
%T The defining boundary conditions and the~degenerate problem for
%J Sbornik. Mathematics
%D 2003
%P 641-668
%V 194
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_5_a0/
%G en
%F SM_2003_194_5_a0
S. A. Golopuz. The defining boundary conditions and the~degenerate problem for. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 641-668. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a0/