@article{SM_2003_194_4_a5,
author = {L. D. Pustyl'nikov},
title = {The quantum chaos conjecture and generalized continued fractions},
journal = {Sbornik. Mathematics},
pages = {575--587},
year = {2003},
volume = {194},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a5/}
}
L. D. Pustyl'nikov. The quantum chaos conjecture and generalized continued fractions. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 575-587. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a5/
[1] Berry M. V., Tabor M., “Level clustering in the regular spectrum”, Proc. Roy. Soc. London A, 356 (1977), 375–394 | DOI | Zbl
[2] Kosygin D. V., Minasov A. A., Sinai Ya. G., “Statisticheskie svoistva spektra operatorov Laplasa–Beltrami na poverkhnostyakh Liuvillya”, UMN, 48:4 (1993), 3–130 | MR | Zbl
[3] Knauf A., Sinai Ya. G., Classical nonintegrability, quantum chaos, DMV Sem., 27, Birkhäuser, Basel, 1997 | MR | Zbl
[4] Grempel D. R., Prange R. E., Fishman S., “Quantum dynamics of a nonintegrable system”, Phys. Rev. A, 29:4 (1984), 1639–1647 | DOI
[5] Casati G., Guarneri I., “Non-recurrent behaviour in quantum dynamics”, Comm. Math. Phys., 95 (1984), 121–127 | DOI | MR | Zbl
[6] Chirikov B. V., Izrailev F. M., Shepelyansky D. L., “Quantum chaos: localization vs. ergodicity”, Phys. D, 33 (1988), 77–88 | DOI | MR | Zbl
[7] Bellissard J., “Non commutative methods in semiclassical analysis”, Transition to chaos in classical and quantum mechanics, ed. S. Graffi, Springer-Verlag, Berlin, 1991, 1–47 | MR
[8] Pustylnikov L. D., “Neogranichennyi rost peremennoi deistviya v nekotorykh fizicheskikh modelyakh”, Trudy MMO, 46, 1983, 187–200 | MR
[9] Zeldovich Ya. B., “Kvazienergiya kvantovoi sistemy, podvergayuscheisya periodicheskomu vozdeistviyu”, ZhETF, 51 (1966), 1492–1495
[10] Pustylnikov L. D., “Veroyatnostnye zakony v raspredelenii drobnykh chastei znachenii mnogochlenov i obosnovanie gipotezy kvantovogo khaosa”, UMN, 54:6 (1999), 173–174 | MR | Zbl
[11] Pustylnikov L. D., Obobschennye tsepnye drobi i differentsialnye uravneniya, Preprint No 96, Institut prikl. matem., M., 1997
[12] Pustyl'nikov L. D., “Generalized continued fractions and ergodic theory”, J. Math. Sci. (New York), 95:5 (1999), 2552–2563 | DOI | MR | Zbl
[13] Pustyl'nikov L. D., The proof of quantum chaos conjecture, the distribution of distances between adjacent fractional parts of polynomial values, and generalized continued fractions, BiBoS - Preprint No 01-06-040, Univ. Bielefeld, Bielefeld, 2001 | MR
[14] Pustylnikov L. D., “Dokazatelstvo gipotezy kvantovogo khaosa i obobschennye tsepnye drobi”, UMN, 57:1 (2002), 161–162 | MR | Zbl
[15] Khinchin A. Ya., Tsepnye drobi, GIFML, M., 1961 | MR