The quantum chaos conjecture and generalized continued fractions
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 575-587 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The proof of the quantum chaos conjecture is given for a class of systems including as a special case the model of a rotating particle under the action of periodic impulse perturbations. (The distribution of the distances between adjacent energy levels is close to the Poisson distribution and differs from it by terms of the third order of smallness.) The proof reduces to a result in number theory on the distribution of the distances between adjacent fractional parts of values of a polynomial, while the estimate of the remainder term is based on the new theory of generalized continued fractions for vectors.
@article{SM_2003_194_4_a5,
     author = {L. D. Pustyl'nikov},
     title = {The quantum chaos conjecture and generalized continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {575--587},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a5/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - The quantum chaos conjecture and generalized continued fractions
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 575
EP  - 587
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a5/
LA  - en
ID  - SM_2003_194_4_a5
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T The quantum chaos conjecture and generalized continued fractions
%J Sbornik. Mathematics
%D 2003
%P 575-587
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a5/
%G en
%F SM_2003_194_4_a5
L. D. Pustyl'nikov. The quantum chaos conjecture and generalized continued fractions. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 575-587. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a5/

[1] Berry M. V., Tabor M., “Level clustering in the regular spectrum”, Proc. Roy. Soc. London A, 356 (1977), 375–394 | DOI | Zbl

[2] Kosygin D. V., Minasov A. A., Sinai Ya. G., “Statisticheskie svoistva spektra operatorov Laplasa–Beltrami na poverkhnostyakh Liuvillya”, UMN, 48:4 (1993), 3–130 | MR | Zbl

[3] Knauf A., Sinai Ya. G., Classical nonintegrability, quantum chaos, DMV Sem., 27, Birkhäuser, Basel, 1997 | MR | Zbl

[4] Grempel D. R., Prange R. E., Fishman S., “Quantum dynamics of a nonintegrable system”, Phys. Rev. A, 29:4 (1984), 1639–1647 | DOI

[5] Casati G., Guarneri I., “Non-recurrent behaviour in quantum dynamics”, Comm. Math. Phys., 95 (1984), 121–127 | DOI | MR | Zbl

[6] Chirikov B. V., Izrailev F. M., Shepelyansky D. L., “Quantum chaos: localization vs. ergodicity”, Phys. D, 33 (1988), 77–88 | DOI | MR | Zbl

[7] Bellissard J., “Non commutative methods in semiclassical analysis”, Transition to chaos in classical and quantum mechanics, ed. S. Graffi, Springer-Verlag, Berlin, 1991, 1–47 | MR

[8] Pustylnikov L. D., “Neogranichennyi rost peremennoi deistviya v nekotorykh fizicheskikh modelyakh”, Trudy MMO, 46, 1983, 187–200 | MR

[9] Zeldovich Ya. B., “Kvazienergiya kvantovoi sistemy, podvergayuscheisya periodicheskomu vozdeistviyu”, ZhETF, 51 (1966), 1492–1495

[10] Pustylnikov L. D., “Veroyatnostnye zakony v raspredelenii drobnykh chastei znachenii mnogochlenov i obosnovanie gipotezy kvantovogo khaosa”, UMN, 54:6 (1999), 173–174 | MR | Zbl

[11] Pustylnikov L. D., Obobschennye tsepnye drobi i differentsialnye uravneniya, Preprint No 96, Institut prikl. matem., M., 1997

[12] Pustyl'nikov L. D., “Generalized continued fractions and ergodic theory”, J. Math. Sci. (New York), 95:5 (1999), 2552–2563 | DOI | MR | Zbl

[13] Pustyl'nikov L. D., The proof of quantum chaos conjecture, the distribution of distances between adjacent fractional parts of polynomial values, and generalized continued fractions, BiBoS - Preprint No 01-06-040, Univ. Bielefeld, Bielefeld, 2001 | MR

[14] Pustylnikov L. D., “Dokazatelstvo gipotezy kvantovogo khaosa i obobschennye tsepnye drobi”, UMN, 57:1 (2002), 161–162 | MR | Zbl

[15] Khinchin A. Ya., Tsepnye drobi, GIFML, M., 1961 | MR