Abstract class field theory (a~finitary approach)
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 199-223
Voir la notice de l'article provenant de la source Math-Net.Ru
A definition of the reciprocity homomorphism in Neukirch's abstract class field theory is given. This definition uses fairly large additional non-ramified extensions, but they are all finite. This
will enable one to apply the theory thus constructed to the effectivization (algorithmization) of local and global class field
theory alike.
The combination of Neukirch's and Hazewinkel's approaches
used in the paper clarifies class field theory even at the abstract
level of exposition.
@article{SM_2003_194_2_a1,
author = {Yu. L. Ershov},
title = {Abstract class field theory (a~finitary approach)},
journal = {Sbornik. Mathematics},
pages = {199--223},
publisher = {mathdoc},
volume = {194},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a1/}
}
Yu. L. Ershov. Abstract class field theory (a~finitary approach). Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 199-223. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a1/