Abstract class field theory (a finitary approach)
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 199-223
Cet article a éte moissonné depuis la source Math-Net.Ru
A definition of the reciprocity homomorphism in Neukirch's abstract class field theory is given. This definition uses fairly large additional non-ramified extensions, but they are all finite. This will enable one to apply the theory thus constructed to the effectivization (algorithmization) of local and global class field theory alike. The combination of Neukirch's and Hazewinkel's approaches used in the paper clarifies class field theory even at the abstract level of exposition.
@article{SM_2003_194_2_a1,
author = {Yu. L. Ershov},
title = {Abstract class field theory (a~finitary approach)},
journal = {Sbornik. Mathematics},
pages = {199--223},
year = {2003},
volume = {194},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a1/}
}
Yu. L. Ershov. Abstract class field theory (a finitary approach). Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 199-223. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a1/
[1] Neukirch J., Class field theory, Springer-Verlag, Berlin, 1986 | MR | Zbl
[2] Neukirch J., Algebraic number theory. Chapter IV: Abstract class field theory, Springer-Verlag, Berlin, 1999 | MR | Zbl
[3] Ivasava K., Lokalnaya teoriya polei klassov, Mir, M., 1983 | MR
[4] Waterhouse W. C., “Profinite groups are Galois groups”, Proc. Amer. Math. Soc., 42:2 (1974), 639–640 | DOI | MR | Zbl
[5] Ershov Yu. L., “Algoritmicheskie problemy v teorii polei (polozhitelnye aspekty)”, Spravochnaya kniga po matematicheskoi logike. Chast 3: Teoriya rekursii, Nauka, M., 1982, 269–353 | MR