$K_2$ for the simplest integral group rings and topological applications
Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 21-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We calculate the group $K_2(\Lambda)$, where
$\Lambda=\mathbb Z/2[\pi]$ is the group ring of a fundamental group with coefficients in the field $\mathbb Z/2$ and $\pi=\mathbb Z/2\oplus\mathbb Z/2$ is the simplest elementary Abelian group of rank $2$. Using these calculations we estimate from below the value $K_2(\overline\Lambda)$, where $\overline\Lambda$ is the integral group ring of the group $\pi$. This calculation yields certain corollaries in the theory of pseudo-isotopies, since the group
$Wh_2(\mathbb Z/2^2)$ turns out to be non-trivial. Constructions in differential topology are discussed that lead to calculations of $Wh_2$-valued invariants.
@article{SM_2003_194_1_a1,
author = {P. M. Akhmet'ev},
title = {$K_2$ for the simplest integral group rings and topological applications},
journal = {Sbornik. Mathematics},
pages = {21--29},
publisher = {mathdoc},
volume = {194},
number = {1},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/}
}
P. M. Akhmet'ev. $K_2$ for the simplest integral group rings and topological applications. Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/