$K_2$ for the simplest integral group rings and topological applications
Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 21-29

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the group $K_2(\Lambda)$, where $\Lambda=\mathbb Z/2[\pi]$ is the group ring of a fundamental group with coefficients in the field $\mathbb Z/2$ and $\pi=\mathbb Z/2\oplus\mathbb Z/2$ is the simplest elementary Abelian group of rank $2$. Using these calculations we estimate from below the value $K_2(\overline\Lambda)$, where $\overline\Lambda$ is the integral group ring of the group $\pi$. This calculation yields certain corollaries in the theory of pseudo-isotopies, since the group $Wh_2(\mathbb Z/2^2)$ turns out to be non-trivial. Constructions in differential topology are discussed that lead to calculations of $Wh_2$-valued invariants.
@article{SM_2003_194_1_a1,
     author = {P. M. Akhmet'ev},
     title = {$K_2$ for the simplest integral group  rings and topological applications},
     journal = {Sbornik. Mathematics},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {194},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - $K_2$ for the simplest integral group  rings and topological applications
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 21
EP  - 29
VL  - 194
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/
LA  - en
ID  - SM_2003_194_1_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T $K_2$ for the simplest integral group  rings and topological applications
%J Sbornik. Mathematics
%D 2003
%P 21-29
%V 194
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/
%G en
%F SM_2003_194_1_a1
P. M. Akhmet'ev. $K_2$ for the simplest integral group  rings and topological applications. Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/