$K_2$ for the simplest integral group rings and topological applications
Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the group $K_2(\Lambda)$, where $\Lambda=\mathbb Z/2[\pi]$ is the group ring of a fundamental group with coefficients in the field $\mathbb Z/2$ and $\pi=\mathbb Z/2\oplus\mathbb Z/2$ is the simplest elementary Abelian group of rank $2$. Using these calculations we estimate from below the value $K_2(\overline\Lambda)$, where $\overline\Lambda$ is the integral group ring of the group $\pi$. This calculation yields certain corollaries in the theory of pseudo-isotopies, since the group $Wh_2(\mathbb Z/2^2)$ turns out to be non-trivial. Constructions in differential topology are discussed that lead to calculations of $Wh_2$-valued invariants.
@article{SM_2003_194_1_a1,
     author = {P. M. Akhmet'ev},
     title = {$K_2$ for the simplest integral group rings and topological applications},
     journal = {Sbornik. Mathematics},
     pages = {21--29},
     year = {2003},
     volume = {194},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - $K_2$ for the simplest integral group rings and topological applications
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 21
EP  - 29
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/
LA  - en
ID  - SM_2003_194_1_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T $K_2$ for the simplest integral group rings and topological applications
%J Sbornik. Mathematics
%D 2003
%P 21-29
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/
%G en
%F SM_2003_194_1_a1
P. M. Akhmet'ev. $K_2$ for the simplest integral group rings and topological applications. Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/SM_2003_194_1_a1/

[1] Cerf J., “La stratification naturelle des espaces des functions differentiables reeles et le theoreme de la pseudoisotopie”, Publ. Math. IHES, 39 (1978), 5–173 | MR

[2] Hatcher A., Wagoner J., Pseudo-isotopies of compact manifolds, Asterisque, 6, 1973 | MR

[3] Hatcher A., “Concordance spaces, higher simple-homotopy theory, and applications”, Proc. Sympos. Pure Math., 32 (1978), 3–21 | MR | Zbl

[4] Stein M., “Excision and $K_2$ of group rings”, J. Pure Appl. Algebra, 18 (1980), 213–224 | DOI | MR | Zbl

[5] Kolster M., “$K_2$ of non-commutative local rings”, J. Algebra, 95:1 (1985), 173–200 | DOI | MR | Zbl

[6] Hsiang W. C., Sharpe R. W., “Parametrized surgery and isotopy”, Pacific J. Math., 67 (1976), 401–459 | MR | Zbl

[7] Giffen Ch., “Hasse–Witt invariants for $(\alpha,u)$-reflexive forms and automorphisms. I: Algebraic $K_2$-valued Hasse–Witt invariants”, J. Algebra, 44 (1977), 434–456 | DOI | MR | Zbl

[8] Suslin A. A., “Algebraic $K$-theory of fields”, Proceedings of the International Congress of Mathematicians, vol. 1 (Berkeley, California, USA, August 3–11, 1986), Amer. Math. Soc., Providence, RI, 1987, 222–244 | MR

[9] Milnor J., Introduction to algebraic K-theory, Princeton Acad. Press, Princeton, 1971 | MR

[10] Ranicki A., “Algebraic $L$-theory. I: Foundation”, Proc. London Math. Soc. (3), 27 (1973), 101–125 | DOI | MR | Zbl

[11] Wall C. T. C., Surgery on compact manifolds, Academic Press, New York, 1970 | MR

[12] Siebenmann L. C., “Torsion invariants for pseudoisotopies on closed manifolds”, Notices Amer. Math. Soc., 14 (1967), 942

[13] Kinsey L. C., “Pseudoisotopies and submersions of a compact manifold to the circle”, Topology, 26:1 (1987), 67–78 | DOI | MR | Zbl

[14] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42:4 (1987), 55–85 | MR | Zbl

[15] Kharshiladze A. F., “Ermitova K-teoriya i kvadratichnye rasshireniya kolets”, Trudy MMO, 41, 1980, 3–36 | MR | Zbl