On ramification theory in the imperfect residue field case
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1747-1774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the ramification theory of complete discrete valuation fields such that the residue field has prime characteristic $p$ and the cardinality of a $p$-base is 1. This class contains two-dimensional local and local-global fields. A new definition of ramification filtration for such fields is given. It turns out that Hasse–Herbrand type functions can be defined with all the usual properties. Thanks to this, a theory of upper ramification groups and the ramification theory of infinite extensions can be developed. The case of two-dimensional local fields of equal characteristic is studied in detail. A filtration on the second $K$-group of the field in question is introduced that is different from the one induced by the standard filtration on the multiplicative group. The reciprocity map of two-dimensional local class field theory is proved to identify this filtration with the ramification filtration.
@article{SM_2003_194_12_a0,
     author = {I. B. Zhukov},
     title = {On ramification theory in the~imperfect residue field case},
     journal = {Sbornik. Mathematics},
     pages = {1747--1774},
     year = {2003},
     volume = {194},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/}
}
TY  - JOUR
AU  - I. B. Zhukov
TI  - On ramification theory in the imperfect residue field case
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1747
EP  - 1774
VL  - 194
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/
LA  - en
ID  - SM_2003_194_12_a0
ER  - 
%0 Journal Article
%A I. B. Zhukov
%T On ramification theory in the imperfect residue field case
%J Sbornik. Mathematics
%D 2003
%P 1747-1774
%V 194
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/
%G en
%F SM_2003_194_12_a0
I. B. Zhukov. On ramification theory in the imperfect residue field case. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1747-1774. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/

[1] Serre J.-P., Corps locaux, Hermann, Paris, 1968 | MR

[2] Math. USSR-Sb., 37 (1980), 349–365 | DOI | MR | Zbl | Zbl

[3] Hyodo O., “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., 12 (1987), 287–314 | MR | Zbl

[4] Proc. Steklov Inst. Math., 165:3 (1985), 157–185 | MR | Zbl | Zbl

[5] St. Petersburg Math. J., 3:3 (1992), 649–678 | MR | Zbl

[6] Abrashkin V. A., “Towards explicit description of the ramification filtration in the 2-dimensional case”, Proceedings of the conference “Ramification theory of arithmetic schemes” (Luminy, 1999), ed. B. Erez

[7] Abrashkin V. A., “Analog gipotezy Grotendika dlya 2-mernykh lokalnykh polei konechnoi kharakteristiki”, Trudy MIAN, 241, 2003, 8–42 | MR | Zbl

[8] Epp H., “Eliminating wild ramification”, Invent. Math., 19 (1973), 235–249 | DOI | MR | Zbl

[9] Amer. Math. Soc. Transl. Ser. 2, 165 (1995), 175–192 | MR | MR | Zbl

[10] St. Petersburg Math. J., 11:6 (2000), 1063–1083 | MR | Zbl

[11] Fesenko I. B., Kurihara M. (ed.), Invitation to higher local fields, Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000 | MR

[12] Amer. Math. Soc. Transl. Ser. 2, 165 (1995), 1–34 | MR | MR | Zbl

[13] Zhukov I. B., Madunts A. I., “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zapiski nauchn. sem. POMI, 272, 2000, 186–196 | MR | Zbl

[14] St. Petersburg Math. J., 13:3 (2002), 485–501 | MR | Zbl

[15] St. Petersburg Math. J., 9:1 (1998), 69–105 | MR | Zbl

[16] Fesenko I. B., “Abelian local $p$-class field theory”, Math. Ann., 301 (1995), 561–586 | DOI | MR | Zbl

[17] Fesenko I. B., Vostokov S. V., Local fields and their extensions: a constructive approach, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[18] Kahn B., “L' anneau de Milnor d' un corps local à corps residuel parfait”, Ann. Inst. Fourier (Grenoble), 34:4 (1984), 19–65 | MR | Zbl