On ramification theory in the~imperfect residue field case
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1747-1774

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the ramification theory of complete discrete valuation fields such that the residue field has prime characteristic $p$ and the cardinality of a $p$-base is 1. This class contains two-dimensional local and local-global fields. A new definition of ramification filtration for such fields is given. It turns out that Hasse–Herbrand type functions can be defined with all the usual properties. Thanks to this, a theory of upper ramification groups and the ramification theory of infinite extensions can be developed. The case of two-dimensional local fields of equal characteristic is studied in detail. A filtration on the second $K$-group of the field in question is introduced that is different from the one induced by the standard filtration on the multiplicative group. The reciprocity map of two-dimensional local class field theory is proved to identify this filtration with the ramification filtration.
@article{SM_2003_194_12_a0,
     author = {I. B. Zhukov},
     title = {On ramification theory in the~imperfect residue field case},
     journal = {Sbornik. Mathematics},
     pages = {1747--1774},
     publisher = {mathdoc},
     volume = {194},
     number = {12},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/}
}
TY  - JOUR
AU  - I. B. Zhukov
TI  - On ramification theory in the~imperfect residue field case
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1747
EP  - 1774
VL  - 194
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/
LA  - en
ID  - SM_2003_194_12_a0
ER  - 
%0 Journal Article
%A I. B. Zhukov
%T On ramification theory in the~imperfect residue field case
%J Sbornik. Mathematics
%D 2003
%P 1747-1774
%V 194
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/
%G en
%F SM_2003_194_12_a0
I. B. Zhukov. On ramification theory in the~imperfect residue field case. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1747-1774. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a0/