Endomorphism rings of certain Jacobians in finite characteristic
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1139-1149

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, under certain additional assumptions, the endomorphism ring of the Jacobian of a curve $y^\ell=f(x)$ contains a maximal commutative subring isomorphic to the ring of algebraic integers of the $\ell$th cyclotomic field. Here $\ell$ is an odd prime dividing the degree $n$ of the polynomial $f$ and different from the characteristic of the algebraically closed ground field; moreover, $n\geqslant 9$. The additional assumptions stipulate that all coefficients of $f$ lie in some subfield $K$ over which its (the polynomial's) Galois group coincides with either the full symmetric group $S_n$ or with the alternating group $A_n$.
@article{SM_2002_193_8_a1,
     author = {Yu. G. Zarhin},
     title = {Endomorphism rings of certain {Jacobians} in finite characteristic},
     journal = {Sbornik. Mathematics},
     pages = {1139--1149},
     publisher = {mathdoc},
     volume = {193},
     number = {8},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Endomorphism rings of certain Jacobians in finite characteristic
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1139
EP  - 1149
VL  - 193
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/
LA  - en
ID  - SM_2002_193_8_a1
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Endomorphism rings of certain Jacobians in finite characteristic
%J Sbornik. Mathematics
%D 2002
%P 1139-1149
%V 193
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/
%G en
%F SM_2002_193_8_a1
Yu. G. Zarhin. Endomorphism rings of certain Jacobians in finite characteristic. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1139-1149. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/