Endomorphism rings of certain Jacobians in finite characteristic
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1139-1149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that, under certain additional assumptions, the endomorphism ring of the Jacobian of a curve $y^\ell=f(x)$ contains a maximal commutative subring isomorphic to the ring of algebraic integers of the $\ell$th cyclotomic field. Here $\ell$ is an odd prime dividing the degree $n$ of the polynomial $f$ and different from the characteristic of the algebraically closed ground field; moreover, $n\geqslant 9$. The additional assumptions stipulate that all coefficients of $f$ lie in some subfield $K$ over which its (the polynomial's) Galois group coincides with either the full symmetric group $S_n$ or with the alternating group $A_n$.
@article{SM_2002_193_8_a1,
     author = {Yu. G. Zarhin},
     title = {Endomorphism rings of certain {Jacobians} in finite characteristic},
     journal = {Sbornik. Mathematics},
     pages = {1139--1149},
     year = {2002},
     volume = {193},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Endomorphism rings of certain Jacobians in finite characteristic
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1139
EP  - 1149
VL  - 193
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/
LA  - en
ID  - SM_2002_193_8_a1
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Endomorphism rings of certain Jacobians in finite characteristic
%J Sbornik. Mathematics
%D 2002
%P 1139-1149
%V 193
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/
%G en
%F SM_2002_193_8_a1
Yu. G. Zarhin. Endomorphism rings of certain Jacobians in finite characteristic. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1139-1149. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a1/

[1] Koo J. K., “On holomorphic differentials of some algebraic function field of one variable over $\mathbb C$”, Bull. Austral. Math. Soc., 43 (1991), 399–405 | DOI | MR | Zbl

[2] Towse C., “Weierstrass points on cyclic covers of the projective line”, Trans. Amer. Math. Soc., 348 (1996), 3355–3377 | DOI | MR

[3] Poonen B., Schaefer E., “Explicit descent for Jacobians of cyclic covers of the projective line”, J. Reine Angew. Math., 488 (1997), 141–188 | MR | Zbl

[4] Schaefer E., “Computing a Selmer group of a Jacobian using functions on the curve”, Math. Ann., 310 (1998), 447–471 | DOI | MR | Zbl

[5] Zarhin Yu. G., “Hyperelliptic Jacobians without complex multiplication”, Math. Res. Lett., 7 (2000), 123–132 | MR | Zbl

[6] Zarhin Yu. G., “Hyperelliptic Jacobians without complex multiplication in positive characteristic”, Math. Res. Lett., 8 (2001), 429–435 | MR | Zbl

[7] Zarhin Yu. G., “Hyperelliptic Jacobians and modular representations”, Moduli of abelian varieties, Progr. Math., 195, eds. C. Faber, G. van der Geer, F. Oort, Birkhäuser, Basel, 2001, 473–490 | MR | Zbl

[8] Zarhin Yu. G., “Very simple 2-adic representations and hyperelliptic Jacobians”, Moscow Math. J., 2 (2002), 403–431 ; http://xxx.lanl.gov/abs/math.AG/0109014 | MR | Zbl

[9] Zarhin Yu. G., “Cyclic covers of the projective line, their jacobians and endomorphisms”, J. Reine Angew. Math., 544 (2002), 91–110 ; http://xxx.lanl.gov/abs/math.AG/0003002 | MR | Zbl

[10] Zarhin Yu. G., The endomorphism rings of Jacobians of cyclic covers of the projective line, http://xxx.lanl.gov/abs/math.AG/0103203

[11] Mumford D., Abelian varieties, Oxford Univ. Press, London, 1974 | MR | Zbl

[12] Ribet K., “Galois action on division points of Abelian varieties with real multiplications”, Amer. J. Math., 98 (1976), 751–804 | DOI | MR | Zbl

[13] Shimura G., Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publ.; Princeton, NJ, Princeton Univ. Press, 1971 | MR | Zbl

[14] Wagner A., “The faithful linear representations of ${S}_n$ and ${A}_n$ over a field of characteristic $2$”, Math. Z., 151 (1976), 127–137 | DOI | MR | Zbl

[15] Wagner A., “The faithful linear representations of ${S}_n$ and ${A}_n$ over a field of odd characteristic”, Math. Z., 154 (1977), 103–114 | DOI | MR | Zbl

[16] Hoffman P. N., Humphreys J. F., Projective representations of the symmetric groups, Clarendon Press, Oxford, 1992 | MR | Zbl

[17] Wagner A., “An observation on the degrees of the symmetric and alternating group over an arbitrary field”, Arch. Math. (Basel), 29 (1977), 583–589 | MR | Zbl

[18] James G., Kerber A., The representation theory of the symmetric group, Encyclopedia Math. Appl., 16, Addison-Wesley, Reading, MA, 1981 | MR | Zbl

[19] Feit W., Tits J., “Projective representations of minimum degree of group extensions”, Canad. J. Math., 30 (1978), 1092–1102 | MR | Zbl

[20] Kleidman P. B., Liebeck M. W., “On a theorem of Feit and Tits”, Proc. Amer. Math. Soc., 107 (1989), 315–322 | DOI | MR | Zbl